
Eventus ID

Supervised Event Coding

From Text Written in Spanish

Version 2.0

Javier Osorio
&

Alejandro Reyes

June, 2014

ii

Legal Notice

Copyright

c©Copyright 2014, Javier Osorio and Alejandro Reyes

Terms of Use

Eventus ID is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foun-
dation, either version 3 of the License, or any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see http://www.gnu.org/licenses/.

How to Cite This Program

Please cite program as:

Javier Osorio and Alejandro Reyes. 2014. Eventus ID. Supervised Event Coding
From Text Written in Spanish. Version 2.0

BibTex citation:

@misc{Osorio2014,

address = {Puebla, Puebla},

author = {Osorio, Javier and Reyes, Alejandro},

title = {{Eventus ID. Supervised Event Coding from

Text Written in Spanish}},

url = {http://www.javierosorio.net/#!software/cqbi},

year = {2014}

}

iii

http://www.gnu.org/licenses/

iv

Report Bugs

Please report any bugs to: javier.osoriozago@gmail.com

Updated copies of the Eventus ID program and manual can be found at http:

//www.javierosorio.net/#!software/cqbi

Latest manual update: June 10, 2014

javier.osoriozago@gmail.com
http://www.javierosorio.net/#!software/cqbi
http://www.javierosorio.net/#!software/cqbi

Acknowledgements

The development of Eventus ID was possible thanks to the generous financial
support provided by the Doctoral Dissertation Research Improvement Grant of the
National Science Foundation (award SES–1123572); the Drugs, Security and Democ-
racy (DSD) Fellowship of the Social Science Research Council and the Open Society
Foundations; the Jennings Randolph Peace Scholarship Dissertation Program of the
United States Institute of Peace; and the Graduate Research Grant of the Kellogg
Institute for International Studies at the University of Notre Dame.

Further refinements of the program were possible thanks to the opportunities, time
and space provided by the Program on Order, Conflict and Violence at Yale Univer-
sity; the Dissertation Fellowship of the Harry Frank Guggenheim Foundation; and
the Mario Einaudi Center for International Studies at Cornell University.

Special thanks to Philip Schrodt for sharing with us the core event coding algorithm
of Tabari, which served as the corner stone for developing Eventus ID.

v

Contents

1 Introduction 1

1.1 Introduction . 1
1.2 Event Data . 3
1.3 Overview of Eventus ID Coding Process 4
1.4 Downloading Eventus ID and System Requirements 6

1.4.1 Downloading the Software 6
1.4.2 System Requirements and Additional Software 6

1.5 Font conventions . 7
1.6 Share Your Papers and Data . 8
1.7 About the name Eventus ID . 8

2 The Text Corpus 9

2.1 Required Software and Files . 9
2.2 News Report File Naming Convention 10
2.3 Using Web2Eventus to Format the Corpus of Text 11
2.4 Output File: Corpus of Text for Eventus ID 11
2.5 Corpus Example in the Demonstration File 13

3 Event Coding 15

3.1 Event Coding Using Eventus ID 15
3.1.1 Running Eventus ID Step By Step 16
3.1.2 Running Eventus ID “Quick and Dirty” 17

3.2 Actor Dictionary . 19
3.3 Verb Dictionary . 20
3.4 Event Coding Algorithms . 23

3.4.1 General Sequence Algorithm 25
3.4.2 Partial Sequence Algorithm 28

3.5 Limitations of Event Coding . 29

4 Event Location 35

vi

CONTENTS vii

4.1 Location Dictionaries . 35
4.2 Event Location Using Eventus ID 37
4.3 Georeferenced Event Data . 39
4.4 Imputed events . 40

5 Validation and Recoding 41

5.1 Validation . 42
5.2 Accepting Defeat . 43
5.3 Recoding . 44
5.4 Aggregation and Duplicates . 46

6 Special Coding Projects 47

6.1 Identifying the Location of Actors 47
6.2 Locating Specific Behaviors . 48

A Version Release History 49

A.1 Version 1.0, (beta) (May 2013) . 49
A.2 Version 2.0 (June 2014) . 49

viii CONTENTS

Chapter 1

Introduction

1.1 Introduction

Eventus ID is a system for supervised coding of event data extracted from text
written in Spanish. The program is supervised as it requires human intervention
for developing dictionaries used as search categories and for assessing the accuracy
of the coding outcome. This software is capable of coding event data based on a
system of pattern recognition that provides information on who did what to whom,
when and where. The flexibility provided by two event coding algorithms and an
event locator protocol fully integrated into the coding process enables Eventus
ID to identify fine-grained event data at the subnational level. To the best of our
knowledge, this is the first program specifically designed for processing short news
summaries written in Spanish.

Eventus ID was initially developed as part of Osorio’s doctoral dissertation enti-
tled “Hobbes on Drugs: Understanding Drug Violence in Mexico,” which analyzes
the dynamics of organized criminal violence in Mexico (Osorio, 2013). The event
data approach was necessary for identifying a wide range of violent and non-violent
law enforcement actions conducted by government agencies against criminal orga-
nizations, as well as a broad menu of violent tactics perpetrated by criminal groups
against state authorities and against rival criminal organizations. The project ini-
tially intended to use Tabari, a well known event coding protocol created by Schrodt
(2009). However, Tabari had been designed for processing text written in English
and performed poorly when we tried using it for coding events from text written
in Spanish. We approached Schrodt with some inquiries about making Tabari
more flexible so it could be better adapted to the particular features of the Spanish
language. Schrodt kindly shared Tabari’s core coding algorithm with us, and it

1

2 CHAPTER 1. INTRODUCTION

became the corner stone for our development of Eventus ID in our own way. We
are deeply grateful to Philip Schrodt for his generosity and valuable contributions
to the progress of conflict research.

Eventus ID shares with Tabari some basic characteristics of event coding such
as the Deterministic Finite Automata (DFA) approach for string matching and the
use of sparse parsing of sentences rather than full syntactical analysis. However,
Eventus ID and Tabari are quite different in several other respects. As discussed
in Chapter 3, Eventus ID works with a more flexible set of event coding algorithms
that better adapt to the complexities of the Spanish language. In addition, as
Chapter 4 shows, Eventus ID is capable of identifying the geographic location
of events when the information is provided in the source text, a feature not yet
integrated in Tabari. Due to the irregularity of verb forms in different tenses in
Spanish, we decided not include a stemming application in Eventus ID as the
one used in Tabari (see Section 3.3). The lack of a stemming function requires the
researcher to invest more effort in developing encompassing and detailed dictionaries.
In general, the combination of these features and others detailed in this manual
contribute to improving the performance of Eventus ID for event coding from
text written in Spanish.

At the time we were developing the beta version of Eventus ID, Leetaru and
Schrodt (2013) launched the Global Database on Events, Location and Tone (GDELT),
an enormous collection of more than 200 million events generated using Tabari.
This unprecedented database immediately sparked a wave of excitement about mas-
sive event data using automated coding (Ulfedler, 2013b,a). After the initial surge
of optimism, critics raised concerns about the limitations of GDELT and computer-
generated data (Weller and McCubbins, 2014; Hanna, 2014; Steinert-Threlkeld,
2014; Ward et al., 2013). Eventually the debate converged in a more balanced
approach recognizing the value of machine-generated data while acknowledging its
limitations (Moore, 2014a,b; Price and Gohdes, 2014).

Among other limitations, critics argue that GDELT has problems of media coverage
bias (Beieler, 2013) (for a review of the characteristics and consequences of media
bias in conflict research see Davenport (2009) and Davenport and Ball (2002)).
However, a crucial aspect of GDELT’s media coverage bias that has received scant
attention is the fact that it gathers information primarily from news sources written
in English.1 By focusing exclusively on information gathered from English-language
news wires, GDELT neglects a vast amount of timely, detailed news published in the

1GDELT relies on news reports gathered from the following information sources: AfricaNews,
Agence France Presse, Associated Press, Associated Press Online, Associated Press Worldstream,
BBC Monitoring, Christian Science Monitor, Facts on File, Foreign Broadcast Information Service,
The New York Times, United Press International, and The Washington Post (see section “Data
Sources” at http://gdeltproject.org/about.html#sthash.U65HfSJ3.dpuf).

http://gdeltproject.org/about.html##sthash.U65HfSJ3.dpuf

1.2. EVENT DATA 3

native language of a large number of countries. Ignoring non-English written reports
reduces the quality of information about the situation on the ground and ultimately
degrades the accuracy of the event data outcome. This is particularly problematic
if we consider that 91.8 percent of the world population are non–English speakers
(Lewis, Simons and Fennig, 2013).

We expect that Eventus ID can serve as a useful tool for other researchers to help
them develop their own databases of event data from text written in Spanish. In
contributing to reducing the language and media coverage bias of machine generated
event data, we would have achieved much more than what we originally envisioned.

1.2 Event Data

Eventus ID relies on pattern recognition to identify events from text written in
Spanish. At its core, an event is a set of information providing a description of
someone doing something to someone else. Events are composed of three basic
elements:

Source: The actor or perpetrator of the action. Actors are identified by Eventus
ID as proper nouns in the text.

Action: The specific action carried out by the source. Actions are identified by the
system as verb phrases in the text.

Target: The actor towards or upon whom the perpetrator carried out an action.

Besides indicating who (source) did what (action) to whom (target), a more com-
prehensive description should also indicate when and where the event took place.
This provides two additional elements:

Date: The date when the episode occurred.

Location: The specific location of the event.

To detect the source, action and target, Eventus ID uses dictionaries of actors
and verbs. While reading the text, Eventus ID uses the lists of proper nouns and
verbs provided by the dictionaries as searching categories to recognize actors and
actions. Once these elements are detected, the program puts the textual informa-
tion into numeric format and stores the codes in a database. While coding events,
Eventus ID identifies the date of the event using information provided by the file
nomenclature. Finally, the program relies on a dictionary of locations to identify
the place of occurrence of the episode.

4 CHAPTER 1. INTRODUCTION

1.3 Overview of Eventus ID Coding Process

The process of event identification process implemented in Eventus ID consists of
six stages: information gathering, formatting the text corpus, event coding, event
location, validation, and output generation. The first two stages are implemented
using the ancillary software Web Text Downloader and Web2Eventus re-
spectively. The process of event identification and event location are carried out in
the third and fourth stages. For the sake of clarity, these two stages are discussed
separately, but they are integrated into Eventus ID automatically. The fifth stage
requires additional human intervention for improving the accuracy of the automated
coding protocol in order to achieve the final stage, generating a validated database.
The diagram in Figure 1.1 presents all the stages and their main associated tasks.
In brief, the process is structured as follows:

Stage 1. Information gathering. The user identifies a set of news resources
relevant to the research project. We recommend the use of the program Web Text
Downloader and its related procedure for extracting and storing news reports
(Osorio and Reyes, 2014b). The output of this stage is a collection of news reports
in individual files. Since a variety of automated and assisted web scraping techniques
are available, Stage 1 is not discussed in this manual.

Stage 2. Corpus of text. The user gathers the collection of news reports to build
a text corpus to be input to Eventus ID. The corpus is a large, structured body
of text containing the content of all news reports gathered. We recommend the use
of the program Web2Eventus and its related procedure for structuring the text
corpus according to the format required by Eventus ID (Osorio and Reyes, 2014a).
The output of this stage is the text corpus to be input to Eventus ID for event
coding. This stage is the main topic of Chapter 2.

Stage 3. Event identification using Eventus ID. The user runs Eventus
ID to identify event data from the corpus of text. Identifying events requires that
dictionaries of actors and verbs have been created. Eventus ID uses the list of
actors and verbs as search categories to find the elements of event data (source,
action and target) in news reports. To identify events, Eventus ID relies on two
event coding algorithms that better accomodate to the characteristics of the Spanish
language. The output of this stage is a database containing event data identified in
the corpus of text. This stage is discussed in Chapter 3.

Stage 4. Event location using Eventus ID. This stage requires location dic-
tionaries to have been created containing the names of states and municipalities to
be used as search categories, along with some filters to enable disambiguation of
specific cases. The event location algorithm uses locality names to inspect the cor-
pus of text in order to identify the places where the events occurred. The output of

1.3. OVERVIEW OF EVENTUS ID CODING PROCESS 5

1.1

Information gathering

1.2

Individual input files

2.1

Eventus ID input format

2.2

Corpus of text

3.2 Verbs

dictionary

3.3

Eventus ID

event coding

3.4

Event

data

3.1 Actors

dictionary

Stage 1

Stage 2

Stage 3

4.2

Eventus ID

event locator

4.3

Georeferenced

event data

4.1 Location

dictionaries

Stage 4

5.2

Recoding

5.1

Validation

Stage 5

Stage 6 6.1

Validated event data

Figure 1.1: Eventus ID coding process.

this stage is a database of georeferenced event data. Although analytically distinct,
the event identification and the location detection procedures are automatically ex-
ecuted when Eventus ID is run. Chapter 4 discusses the specifics of the event
location process.

Stage 5. Validation. The user compares a sample of manually coded event data
with the events identified by Eventus ID. Discrepancies between the manual and
computer-generated data provide insights for modifying the actor, verb or location
dictionaries. A series of iterations can be expected to improve the accuracy of the
automated coding protocol and the validity of the resulting data.

6 CHAPTER 1. INTRODUCTION

Stage 6. Output. The final output of the coding process is a validated database
of georeferenced event data. The validation stage and the output are discussed in
Chapter 5.

1.4 Downloading Eventus ID and System Requirements

1.4.1 Downloading the Software

Users can access Eventus ID version 2.0, the user manual and working files by
downloading the demonstration file (Eventus ID DEMO.zip) from the following web-
site:

http://www.javierosorio.net/#!software/cqbi

1.4.2 System Requirements and Additional Software

1. Eventus ID runs on Windows 7, or later versions.

2. Eventus ID runs in the command line interface.

• To launch the command line interface in Windows, click on the Start
button in the lower left of the screen, then type the command cmd in the
search bar and press enter. This will open the command line interface as
shown in Figure 1.2.

3. Eventus ID requires Perl 5, or any later version to be already installed.

• We recommend using Strawberry Perl, a canned Perl environment
which contains the set of tools and libraries necessary for using Eventus
ID. Strawberry Perl is available for download at http://strawberryperl.
com/.

• Users can find more Perl resources and documentation at http://www.
perl.org/.

• To find out which Perl version is installed in your computer, type perl

-v in the command line. It will display your current Perl version.

4. Users will also need a plain text editor to edit program files. We recom-
mend using Notepad++, a source code editor that supports Perl scripts.
Notepad++ can be downloaded at http://notepad-plus-plus.org/.

The beta version of Eventus ID ran in the Unix environment. However, we decided
to adapt Version 2.0 for the Windows operating system. We expect that this will
reduce the technological barrier and increase the number of users in Latin America,
a region where Unix and Mac operating systems are not as popular as Windows.

http://www.javierosorio.net/#!software/cqbi
http://strawberryperl.com/
http://strawberryperl.com/
http://www.perl.org/
http://www.perl.org/
http://notepad-plus-plus.org/

1.5. FONT CONVENTIONS 7

Figure 1.2: Command line interface.

1.5 Font conventions

This manual uses the following typeface convention:

Computer Programs are in Small Caps font.

File names are in Sans Serif font.

Filename extension is a suffix usually two to four characters long indicating the
encoding (format) of a file. Extensions begin with a period and are in italics. The
file formats used in this manual are:

.pl Perl format file

.txt Unicode plain text file

.html Hyper Text Markup Language file

.pdf Portable Document Format file

.csv ASCII text as comma separated values file

Commands, key entries and directories in the command line interface are in
typewriter font.

URL stands for Uniform Resource Locator and indicates network resources such as
websites or email addresses. URLs are in typewriter font.

Text content in input files such as the corpus of text, dictionaries (e.g. actors,
verbs, locations) and output files are also in typewriter font.

Special symbols:

8 CHAPTER 1. INTRODUCTION

� is the diamond symbol representing a white space in the text.

−→ is the right arrow representing a space generated by the tabulator (tab)
key in the text. The tab symbol is usually not visible in text editors, unless the
“Show All Characters” option is activated. Notepad++ users can activate
this feature by clicking on the icon ¶.

| is the vertical bar symbol and is used as a marker in the output files generated
by Eventus ID.

1.6 Share Your Papers and Data

We are committed to providing public goods for innovative research. We want to
acknowledge Phillip Schordt, who generously shared Tabari’s core algorithm with
us, thus providing the cornerstone for developing our won coding protocol. We are
truly standing on the shoulders of a giant. In reciprocity, we want to make Eventus
ID v.2.0 publicly available as free software.

We hope you find Eventus ID useful in your research. If you use Eventus ID, we
would love to post your papers and data at our website. We invite you to share them
with us. Ideally, we would like this to promote the development of a community of
researchers coding a wide variety of event types from text written in Spanish. There
is so much data to be coded in Latin American countries. By making Eventus ID
software free, we hope others will be able to address important topics by generating
valuable new data.

1.7 About the name Eventus ID

The name Eventus ID comes from joining the Latin word ēventūs, which is the
plural noun for events, and ID, the abbreviation for identification. In this way, the
program name provides a simple and general idea of what the software does: it
identifies events. Although Eventus ID was originally developed for coding events
from text written in Spanish, the program is potentially capable of processing text
in other languages that use the Latin script as a writing system. However, we still
have to conduct some tests to assess the coding accuracy of the program in other
languages.

Chapter 2

The Text Corpus

This chapter describes the format of the text used as the corpus in Eventus ID.
To do so, it explains how to use the ancillary program Web2Eventus for pro-
cessing previously downloaded news reports and inserting the content into a sin-
gle document (Osorio and Reyes, 2014a). Web2Eventus is available at http:

//www.javierosorio.net/#!software/cqbi.

In brief, Web2Eventus processes each news report by extracting the content,
breaking it down by paragraphs, attaching a paragraph counter, formatting the
information and storing all the text into a file readable by Eventus ID.

Prior to using this program, users must have a set of individual files containing
news reports. It is suggested that the users employ the Web Text Downloader
software and follow the procedure described in its manual for extracting news reports
from the web.

2.1 Required Software and Files

To process news reports to convert them into Eventus ID format, it is necessary
to have the following files in the same directory:

1. The program file web2eventus.pl. This program runs on the Windows com-
mand line interface and requires Perl 5 or later version.

2. A folder containing the individual files of news reports previously extracted
from the web. The example presented in this manual uses news reports stored
in Hyper Text Markup Language (.html) format, but the software is also
capable of processing plain text files (.txt).

9

http://www.javierosorio.net/#!software/cqbi
http://www.javierosorio.net/#!software/cqbi

10 CHAPTER 2. THE TEXT CORPUS

2.2 News Report File Naming Convention

In order for Web2Eventus to process news report files, individual file names must
follow a specific set or naming rules. Complying with this nomenclature is crucial
for properly managing files, formatting the corpus of text used in Eventus ID and
extracting information about the date when an event took place. The nomenclature
consists of four main elements:

• Date

• Counter

• Source

• Extension

File names constitute the primary document identification code and should be struc-
tured as: yyyymmddccc SRC.ext, where:

• yyyy is a four-digit number representing the year (e.g. 2009).

• mm is a two digit number representing the month (e.g. 02 for February).

• dd is a two digit number representing the day (e.g. 17).

• ccc is a three-digit number counting the number of reports issued by the same
source in a given day. The three digits allow the counter to range from 001 up
to 999.

• SRC is a short acronym indicating the name of the information source.

• ext is the extension indicating the format of the file. Web2Eventus can
process files in .html or .txt format.

There should be no duplicate file names. The counter in the nomenclature (ccc) is
an effective way of assigning unique file names even if there are a large number of
news reports. For convenience, the counter considered in this example is set to three
digits, but users can assign as many digits to the counter as they consider necessary.

For example, consider a set of three on-line press releases issued by the Mexican
Army (Secretaŕıa de la Defensa Nacional, SEDENA). The first two news reports
were issued on August 23, 2009 and the third report on October 17, 2010. According
to the nomenclature, the files should have the following names:

20090823001 SEDENA.html
20090823002 SEDENA.html
20101017001 SEDENA.html

2.3. USING WEB2EVENTUS TO FORMAT THE CORPUS OF TEXT 11

2.3 Using Web2Eventus to Format the Corpus of Text

To create a corpus of text for Eventus ID using previously downloaded news
reports, users must follow the following steps:

Step 1: In the command line, type: perl web2eventus.pl and then press the
Enter key. The command perl calls the Perl environment, and the command
web2eventus.pl launches the program Web2Eventus.

Step 2: Then, the program will then ask the user to enter the path to the folder
containing the files to be processed and then press Enter. The directory path can
be entered in either of two ways:

• To indicate the absolute path, type: C:/directory/web/*.html

• To indicate the relative path, type: web/*.html

These command lines both instruct Web2Eventus to process all .html files from
folder web. The absolute path indicates the specific location of the directory in the
computer station used for this task. The relative path indicates the software to
process the files contained in a sub-folder already hosted in the working directory
being used.

Web2Eventus can also process news report files in plain text format. To do so,
users just need to replace the extension .html with .txt in the command line.

If users want to process only one particular file, they can do so by indicating the
specific file name as web/file name.html.

Step 3: Finally, the program asks the user to enter the name of the output file (e.g.
corpus DEMO.txt) containing the corpus of text to be used by Eventus ID, and
then press enter. Do not forget to include the .txt extension in the file name.

2.4 Output File: Corpus of Text for Eventus ID

Web2Eventus generates an output file (corpus.txt) ready to be used in Eventus
ID as text corpus. Each line in the output contains the information of one individ-
ual paragraph from one news report. The corpus of text presents the information
according to the following structure:

date FileName P1 P2 | Text, where:

12 CHAPTER 2. THE TEXT CORPUS

• date: indicates the date of the news report, obtained by extracting this infor-
mation from the file name entered by the user.

• FileName: indicates the file name of each news report.

• P1: Web2Eeventus breaks each news report into paragraphs. P1 is a pro-
gressive number indicating the local paragraph counter for each news report.
This is useful for identifying a specific paragraph within each news report.

• P2: is the global paragraph counter for all news reports comprised in the
corpus of text. This counter is useful for quickly locating a specific paragraph
in the corpus.

• |: the vertical bar symbol (|) is a marker indicating the beginning of the text
extracted from the paragraph.

• Text: the content of each paragraph from each news report is stored in a
single line. The length of each line depends on the number of characters in
the paragraph.

The corpus of text generated for use by Eventus ID consists of a plain text file
(.txt) whose content is structured in the following way:

20130808 20130808001 SRC1 P0 P1 | Lorem ipsum dolor sit amet...

20130808 20130808001 SRC1 P1 P2 | Praesent at sem ac enim ...

20130808 20130808001 SRC1 P2 P3 | Donec sed mattis orci...

20130808 20130808001 SRC2 P0 P4 | Donec velit justo, varius...

20130808 20130808001 SRC2 P1 P5 | Praesent quis felis...

20130808 20130808001 SRC2 P2 P6 | Nunc blandit vitae purus...

20130808 20130808001 SRC2 P3 P7 | Quisque quis lorem sed nunc...

20130921 20130921001 SRC1 P0 P8 | Sed ornare, nisi vitae...

20130921 20130921001 SRC1 P1 P9 | Nulla vel condimentum...

20130921 20130921002 SRC1 P0 P10 | Phasellus porta ipsum eu...

20130921 20130921002 SRC1 P1 P11 | Etiam porttitor vitae odio...

20130921 20130921002 SRC1 P3 P12 | Donec cursus metus vel...

In this example, the first three lines represent the paragraphs extracted from a news
report issued on October 8, 2013 by source SRC1. Lines four to seven show the
content from a report issued the same day by a different source, SRC2. Notice how
the local paragraph counter indicates the number of paragraphs in each news report
while the global paragraph counter indicates the total number of paragraphs in the
corpus of text. Lines eight to twelve contain the information from two news reports
issued by the same source (SRC1) on the same day (September 21, 2013). Notice that

2.5. CORPUS EXAMPLE IN THE DEMONSTRATION FILE 13

the file nomenclature system assigns unique names to each file (20130921001 and
20130921002, respectively), which also helps provide unique paragraph identifiers
when the local and global paragraph counters are added.

Besides reformatting the text by paragraph, Web2Eeventus identifies phonetic
diacritic and emphatic marks on vowels, also known as acute accents (e.g. á, é, ı́,
ó and ú) and substitutes them by their corresponding vowels without accents. Al-
though accent marks constitute an important element of correct spelling in Spanish,
several factors motivate the decision to eliminate accents from the corpus. First, it
facilitates the task of dictionary development. Since there are a variety of ways of
writing special characters in .html language, users who want to use text with ac-
cents would have to tackle the daunting task of including each word with its different
accent codes (e.g. arrestó, arrestó, arrestó or arrest’f3) in the dic-
tionaries. Second, spelling errors are unfortunately quite common in news reports
written in Spanish, as journalists often forget to write the accents in words. Even if
the researcher includes words with accents in the dictionaries, low quality text that
fails to comply with accent spelling rules would generate coding error. Since Even-
tus ID “reads” text in Spanish without accent marks, this manual does not include
accent marks in text examples written in Spanish and denoted in typewriter font.

The reformatting process also cleans up the text by eliminating some punctuation
signs (e.g. “ ” : ; ? ! -). It is important to notice that Web2Eeventus also
creates blank spaces to the sides dot “.” and comma “,” punctuation signs, thus
reformatting them as “�.�” and “�,�”, there the symbol � represents a blank space.
This characteristic of the corpus of text is crucial for Eventus ID to identify the
event location as described in Chapter 4 .

2.5 Corpus Example in the Demonstration File

Recent efforts in computerized coding of event data aim to provide reliable and open
access of event datasets based on transparent and documented coding protocols
and source texts (Open Event Data Alliance, 2014). However, as indicated by
Schrodt (2014), license conditions or other intellectual property rights often prohibit
researchers from sharing copyrighted source texts, thus hindering the transparency,
replicability and validation of the coding protocol.

To address this issue, the text corpus in the Eventus ID demonstration file contains
real press releases issued by the Mexican Army (Secretaŕıa de la Defensa Nacional,
SEDENA). These documents were officially issued by Mexican authorities and ac-
count for facts and events that took place in the indicated dates and locations. The
folder SEDENA permission in the Eventus ID DEMO.zip file contains the official let-
ter authorizing the use of these press releases. In compliance with the requirements
of SEDENA, the folder includes a file containing the citations of the documents used
in the corpus of text.

14 CHAPTER 2. THE TEXT CORPUS

Chapter 3

Event Coding

This chapter is divided into five sections. The first section gives the basic steps
for running Eventus ID. The second and third part describe the characteristics of
actor and verb dictionaries in more detail. The fourth section describes the coding
algorithms used by Eventus ID for event coding. The last section discusses some
of the limitations of event coding using Eventus ID.

3.1 Event Coding Using Eventus ID

This section lists the basic steps for event coding using Eventus ID. The specific file
names mentioned in this manual are those contained in the Eventus ID DEMO.zip
file. The content, characteristics and functions of each of these files are further
discussed in the different sections of this chapter.

Eventus ID requires the following programs and files to be contained within the
same directory:

• EVENTUS ID 2.0.pl is the program file of Eventus ID in Perl.

• actors DEMO.txt is the dictionary listing the actors to be identified as the
source or target of an event.

• verbs DEMO.txt is the dictionary indicating the actions carried out by the
actors.

• corpus DEMO.txt is the corpus of text in the format readable by Eventus ID.
The corpus must be processed using the program Web2Eventus.

15

16 CHAPTER 3. EVENT CODING

• codigos Events DEMO.txt is the output file of numerical event codes generated
by the event coding procedure. Alternatively, the user can substitute the
numerical coding by the textual codification file (textos Events DEMO.txt).

• states DEMO.txt is the dictionary providing the list of states.

• municipalities DEMO.txt contains the list of municipalities and towns.

• filters DEMO.txt is a set of items for disambiguating locations.

With the exception of the EVENTUS ID 2.0.pl program file, all other files are in
plain text format (.txt).

There are two ways of running Eventus ID. Users can enter the instructions step
by step procedure or implement the “quick and dirty” approach. These procedures
are outlined in the following sections.

3.1.1 Running Eventus ID Step By Step

Users can run Eventus ID by implementing the following steps:

Step 1. Open terminal: Launch the command line interface in Windows and
move to the directory containing the files indicated above.

Step 2. Launch Eventus ID: In the command line, type: perl EVENTUS ID 2.0.pl

and then press the Enter key. This will start running Eventus ID using the perl
environment.

Step 3. Enter the list of sources: Enter the file name of the actors dictionary
used to identify the source actor. Type: actors DEMO.txt and press Enter.

Step 4. Enter the list of targets: Enter the actor dictionary used to identify
the targets of actions. The DEMO files uses the same list of actors to identify both
the source and target of an event. In this case, type actors DEMO.txt again and
press Enter. If necessary, Eventus ID has the flexibility to allow users to enter
a different list of actors to identify the targets of an event. In that case, type the
name of a specific target actor dictionary.

Step 5. Enter the list of actions: Enter the verb dictionary to identify the
actions. Type: verbs DEMO.txt and press Enter.

Step 6. Enter the corpus: Enter the corpus of text used for event coding. Type:
corpus DEMO.txt and press Enter. The text corpus must be previously created

3.1. EVENT CODING USING EVENTUS ID 17

using the program Web2Eventus and formatted according to the specifications
outlined in Chapter 2.

Step 7. Enter the list of municipalities: Enter the dictionary of municipalities
used for identifying event locations. Type: municipalities DEMO.txt and press
Enter.

Step 8. Enter the list of states: Enter the states dictionary used for identifying
event locations. Type: states DEMO.txt and press Enter.

Step 9. Enter the list of filters: Enter the filter dictionary for disambiguating
event locations. Type: filters DEMO.txt and press Enter.

Step 10. Enter the name of the event coding output: Type: Events DEMO.txt,
then press the Enter key. Eventus ID uses that name to automatically generate
two files, one containing the numeric codes of the elements identified in the corpus
and another containing the actual words identified in the text. Based on the name
provided, the program generates the file codigos Events DEMO.txt including the nu-
meric codes and the file textos Events DEMO.txt containing the text information.
The former is primarily intended to be used for conducting statistical analysis, and
the latter is intended to assist users in validating the accuracy of coding protocol.

Step 11. Select the algorithms used for event coding: The user has the option
of selecting distinct coding algorithms to identify event data in the text corpus. As
discussed in detail in section 3.4, Eventus ID includes a general sequence algorithm
and a partial sequence algorithm for extracting event data from different syntactical
structures. Users can enter either 1 or 2 to select the desired coding scheme. Type
option 1 and press Enter for coding events using only the general sequence algorithm.
Type option 2 and press Enter to use both the general and the partial sequence
algorithms for event coding.

The final output generated by Eventus ID contains information about the source,
action, target, date and location of each event, thus providing an encompassing
description of who did what to whom, when and where.

3.1.2 Running Eventus ID “Quick and Dirty”

Users can run Eventus ID in just a couple steps without manually entering all the
individual files specified in the step by step procedure. Two files are necessary to
implement the “quick and dirty” approach:

• EVENTUS ID 2.0.pl is the program file of Eventus ID in Perl.

18 CHAPTER 3. EVENT CODING

• config DEMO.txt is the configuration file containing the name of all files nec-
essary for automatically running Eventus ID.

The file names contained in the config DEMO.txt file correspond to the steps men-
tioned in the previous section and must be listed in the following order:

actors DEMO.txt

actors DEMO.txt

verbs DEMO.txt

corpus DEMO.txt

municipalities DEMO.txt

states DEMO.txt

filters DEMO.txt

Events DEMO.txt

2

To run Eventus ID by the “quick and dirty” method, users have to carry out these
two steps:

Step 1. Open terminal: Launch the command line interface in Windows and
move to the directory containing the files listed above.

Step 2. Launch Eventus ID and the configuration file: In the command line,
type: perl EVENTUS ID 2.0.pl config DEMO.txt and then press the Enter key.

The last entry in the config DEMO.txt file corresponds to option 2 in Step 11, which
relies on both the general and partial coding algorithms to identify events in the
text corpus.

The rest of this chapter discusses the characteristics of the actor and verb dictionaries
and the different event coding algorithms used in Eventus ID. The procedure for
identifying the geographic location of the events is presented in Chapter 4.

3.2. ACTOR DICTIONARY 19

3.2 Actor Dictionary

Eventus ID uses the actor dictionary to identify both the source and the target
of an event. As mentioned before, the program has the flexibility to detect these
two elements using different dictionaries. However, for the sake of simplicity, this
section discusses the characteristics of the actor dictionary assuming it will be used
for coding both the source and the target. The actor dictionary consists of a list of
proper nouns which can refer to perpetrators and victims of various types of violence.
Proper nouns serve as searching categories enabling actors in the text corpus to be
identified. Each item in the actor dictionary is associated with a numeric code that
corresponds to the actor’s main group and subgroup as determined by the researcher
coding protocol.

The actor dictionary file is in plain text format (.txt). Actors’ names composed
of multiple words are separated by an underscore “ ” to help Eventus ID searcg
for the words in the text. The underscore “ ” should also be the last element of
each word in the actor dictionary. The program does not require words in the
text corpus to be separated by an underscore. Eventus ID “reads” the corpus
containing words separated simply by blank spaces as in any regular text, but it
uses the concatenated words of the dictionaries to identify patterns in the corpus.
Once the name of an actor matches the content of the text, its corresponding code
is stored. The following lists present an example of the actor dictionary in both
English and Spanish:

English:

army troops [202051]
police officer [204021]
member of a criminal organization [601060]
cocaine [801022]
AK 47 [901013]

Spanish:

tropas del ejercito [202051]
oficial de policia [204021]
miembros de una organizacion criminal [601060]
cocaina [801022]
AK 47 [901013]

20 CHAPTER 3. EVENT CODING

3.3 Verb Dictionary

The verb dictionary consists of a list of verb phrases referring to actions conducted
by a source or directed against a target. Like the elements of actor dictionary,
the list of verbs must be contained in a plain text file (.txt). Each item in the
verbs dictionary is followed by a numeric code for the corresponding action category
assigned by the user. In some occasions, actions can be adequately captured with
a single verb phrase. However, the complexities of natural language usually require
using more complex sentences for accurately identifying the actions of interest. As
in the actor dictionary, actions described by more than one word are separated by
an underscore “ ”, which is also required at the end of each verb item.

The following list is an example of the verbs dictionary in English and Spanish:

English:

attack [88101]
attacked [88101]
- were * [99101]
arrest [88104]
- under * [88104]
combat [88101]
- strengthen the *against [- - -]

Spanish:

atacar [88101]
atacados [88101]
- fueron * [99101]
arresto [88104]
- bajo * [88104]
combate [88101]
- fortalecer el *contra [- - -]

In order to improve the accuracy of the coding protocol, users might consider using
a variety of verb tenses to refer to the same action. As shown in the example above,
the verbs “attack” and “attacked” have the same code 88101. Some verbs are
followed by a set of associated words that refine the meaning of the verb in its
context. In these cases, the “*” symbol serves as a wild card indicating where the
preceding verb itself should appear in the phrase. In the example above, Eventus
ID automatically inserts the verb “attacked” into the item were * and looks for
the verb phrase “were attacked” in the corpus of text. The code for “attack”
is slightly different than the code for “were attacked.” Both cases have the root
code 101 but they differ in the prefix; the former starts with 88 and the latter with

3.3. VERB DICTIONARY 21

99. The prefix 99 is useful as a disambiguation system to indicate a verb in passive
voice. This reference serves as a hint for the validation and recoding processes, as
well as for statistical analysis of the data. We found this coding system useful for
processing news reports in Spanish because, in contrast to writing recommendations
in English, the use of passive voice is highly common in journalistic reports written
in Spanish (Rodŕıguez, 2001).

As mentioned earlier, Eventus ID uses a pattern recognition coding scheme similar
to that implemented by Tabari. However, a key difference between these two
protocols lies in the way they handle verb phrases. Tabari is designed for coding
in English, whose grammatical rules allow for simple general ways of combining the
subject, verb and object in a sentence. For example, the forms of most regular verbs
in English vary only by adding “s,” “ed,” or “ing” to the end of the infinitive stem.
Another characteristic of English is that the gender and number of the noun do not
affect the verb form (excepting only the third person singular present). This means
that “you,” “he,” “she,” “we” or “they” can be mostly combined with the different
verb forms almost indistinctly. Based on these simple and general grammatical rules,
Tabari incorporates a stemming algorithm to automatically identify all the different
verb tenses from a stem. Using the verb “to arrest” as an example, Table 3.1 shows
that English allows the stem “arrest” to be easily conjugated for different verb tenses,
gender and numbers by simply adding a suffix at the end of the stem. Tabari’s
takes advantage of this grammatical characteristic to readily identify a variety of
verb forms.

Although Tabari’s stemming facility is very convenient for coding in English, this
feature can generate a substantial amount of error when coding in Spanish. Using
an English-based stemming algorithm is not appropriate for event coding in Span-
ish because verb tenses in the latter do not end with “s,” “ed” or “ing.” Verb
conjugation in Spanish is much more varied, and using an English-based stemming
algorithm would require more than simply “tweaking” the algorithm. Table 3.1
shows that the ending part of the verb “arrestar” (to arrest) is very different across
the various combinations of verb tenses, number and gender. Given the complex-
ity of conjugation in Spanish, Eventus ID does not include a stemming algorithm.
The “shortcuts” that might be useful for coding in English would be counterproduc-
tive in Spanish. Unfortunately, reducing the propensity to generate error through a
stemming process comes at a cost. In order to improve the accuracy of the coding
protocol, Eventus ID requires the user do develop large and detailed verb dic-
tionaries considering a variety of verb tenses for different gender and number of
subjects.

2
2

C
H
A
P
T
E
R

3.
E
V
E
N
T

C
O
D
IN

G

Table 3.1: Verb tenses in English and Spanish
Indicative Subjuntive Past

Person Present Past Present Imperfect Gerund passive voice

English
I arrest arrested arrest arrested arresting was arrested

you arrest arrested arrest arrested arresting were arrested
he, she arrests arrested arrests arrested arresting were arrested

we arrest arrested arrest arrested arresting were arrested
you arrest arrested arrest arrested arresting were arrested
they arrest arrested arrest arrested arresting were arrested

Spanish
yo arresto arresté arreste arrestara o arrestando fui arrestado

arrestase
tú arrestas arrestaste arrestes arrestaras o arrestando fuiste arrestado

arrestases
ella, él, usted arresta arrestó arreste arrestara o arrestando fue arrestada o

arrestase fue arrestado
nosotros arrestamos arrestamos arrestemos arrestáramos o arrestando fuimos arrestados

arrestásemos
vosotros arrestáis arrestasteis arrestéis arrestarais o arrestando fuisteis arrestados

arrestaseis
ellas, ellos, Uds. arrestan arrestaron arresten arrestaran o arrestando fueron arrestadas o

arrestasen fueron arrestados
vos arrestás arrestaste arrestés arrestaras o arrestando fuiste arrestado

arrestases

3.4. EVENT CODING ALGORITHMS 23

Developing actor and verb dictionaries requires a reiterated process of learning,
refinement, knowledge accumulation, detailed reading and, feedback from the val-
idation process. This repeated process of coding, verification and recoding allows
the dictionaries to be fine-tuned by adding actors and verbs or modifying existing
ones. However, it is important to note that it is not possible to develop “perfect”
dictionaries including “absolutely all” possible actors or verb phrases and capable of
achieving a 100 percent coding accuracy. As noted by Grimmer and Stewart (2013)
all quantitative models of language are flawed, but some are useful.

In some instances, words referring to verbs or actors of interest can have ambigu-
ous meanings depending on specific sentence constructions that the user wants to
avoid. For those cases, Eventus ID offers the possibility of ignoring some pieces
of information that could generate coding error. Following the example of the verbs
dictionary presented above, users interested in coding violent confrontations be-
tween different actors might include in the dictionary the verb phrase “combat”, to
which they assign the code number [88101]. However, news reports might include
a sentence stating that “Government efforts aim to strengthen the combat

against criminal organizations,” a common closing line in government press
releases. In this context, the word “combat” has a metaphoric meaning that does
not refer to a specific event of armed combat between government forces and mem-
bers of criminal organizations. In order to avoid erroneously coding words of interest
contained in metaphoric sentences, Eventus ID enables a mechanism for disam-
biguation. In those cases, users might consider assigning the code [- - -] to those
sentences that they want to be ignored. This null code is applicable for items in
both the actor and verb dictionaries and gives Eventus ID the instruction to skip
that specific sequence of words.

3.4 Event Coding Algorithms

In order to code events from the text corpus, Eventus ID uses two pattern recog-
nition algorithms: the general sequence algorithm codes events that comply with
the full source–action–target structure, and the partial sequence algorithm codes
incomplete events in the verb–target structure. Both algorithms use the principles
of the sparse parsing technique originally developed by Schrodt in KEDS and later
refined in Tabari. The sparse parsing method uses the actor and verb dictionaries
as searching criteria to identify only the relevant parts of the text that correspond
to an event, while the rest of the text is ignored for coding purposes.

Based on the nomenclature and corpus format discussed in Chapter 2, both coding
algorithms first identify the date of the event (date) and the document and para-
graph identification label (FileName P1 P2) from the beginning of each line in the

24 CHAPTER 3. EVENT CODING

text corpus. Each algorithm then uses its own scheme to recognize the elements
of the event contained in the corpus. Table 3.2 describes the steps undertaken by
each algorithm for event coding. Eventus ID then saves the outcome of the cod-
ing process in a plain text file. Each line in the outcome file contains the set of
components corresponding to the coded event, separating its elements by tabs and
ordering them. As a result, the general and partial sequence algorithms respectively
generate the following outcomes:

date → FileName P1 P2 → actor1 → verb → actor2

date → FileName P1 P2 → → verb → actor2

Table 3.2: Eventus ID coding algorithms
General sequence algorithm Partial sequence algorithm

1) Search for the actor 1) Search for the verb
- Load the actor dictionary - Load the verb dictionary
- Start reading the text - Start reading the text
- Search for the longest actor first - Search for the longest verb first
- When an actor is found, store as actor1 - When a verb is found, store as verb

- Pause the search where the actor is found - Pause the search where the verb is found
2) Search for the verb 2) Search for the actor
- Load the verb dictionary - Load the actor dictionary
- Resume reading from previous pause - Resume reading from previous pause
- Keep reading the text - Keep reading the text
- Search for the longest verb first - Search for the longest actor first
- When a verb is found, store as verb - When an actor is found, store as actor2

- Pause the search where the verb is found - Pause the search where the actor is found
- If no verb is found, go to Step 4 - If no actor is found, go to Step 3
3) Search for the actor 3) Save the event
- Reload the actor dictionary - Save [- - -] [verb] [actor2] in
- Resume reading from previous pause database
- Keep reading the text - If no actor is found, save the event as
- Search for the longest actor first [- - -] [verb] [- - -] in the database
- When an actor is found, store as actor2 - Start again from Step 1
- Pause the search where the actor is found
4) Save the event
- Save [actor1] [verb] [actor2] in
database
- If no verb is found, save the event
as [actor1] [- - -] [- - -] in the
database
- Start again from Step 1

3.4. EVENT CODING ALGORITHMS 25

3.4.1 General Sequence Algorithm

The general sequence algorithm identifies events that follow the source–action–target
structure. In order to code an event with this algorithm, all three elements must
appear in a sentence in the required order. Consider the following sentence in both
English and Spanish (as mentioned in Section 2.4, Spanish text examples in this
manual deliberately omit accents):

English:

Army troops arrested a member of a criminal group.

Spanish:

Tropas del ejercito arrestaron a miembro de una organizacion criminal.

In this example, all the three elements of the event are present in the sentence in
the required order. In consequence, the general sequence algorithm identifies “Army
troops” as the source, ““arrested” as the action and “member of a criminal

group” as the target. Eventus ID then codes the event in numeric format in the
database as:

202051 → 88104 → 601060

Since sparse parsing only focuses on the relevant parts of the text based on the
words provided by the actor and verb dictionaries, the text could be more verbose
without affecting the result of the coding. Consider the following paragraph:

English:

In a press release issued yesterday, the Mexican government announced

that troops deployed in the municipality of San Luis Rio Colorado, Son.

seized 227 packages of marijuana with a total weight of two tonnes and

250 kilograms while patrolling rural roads in the area.

Spanish:

En un comunicado de prensa emitido el dia de ayer, el gobierno mexicano

informo que tropas destacamentadas en el municipio de San Luis Rio Col-

orado, Son. decomisaron paquetes de mariguana con un peso total de dos

toneladas y 250 gramos, mientras patrullaban caminos rurales del area.

Despite the wordiness of the paragraph, sparse parsing allows Eventus ID to recog-
nize the key components of the event and code the “troops” as the source, “seized”
as the action and “packages of marijuana” as the target.

26 CHAPTER 3. EVENT CODING

As mentioned above, journalists in Mexico often use passive voice and present indica-
tive to write their news reports. Passive voice increases the grammatical complexity
of a sentence by inverting the order of the subject and object. Consider the following
sentence:

English:

A member of a criminal organization was arrested by Army troops.

Spanish:

Un miembro de una organizacion criminal fue arrestado por tropas del

ejercito.

In this example, all the three elements of the event are present in the sentence.
However the subject and object appear in reverse order. According to the general
sequence algorithm, Eventus ID identifies “member of a criminal group” as the
first actor, the verb phrase “was arrested” as the action, and “Army troops” as
the second actor. The output of this event after coding is:

601060 → 99104 → 202051

However, this could be interpreted as “a member of a criminal group arrested ele-
ments of the Army,” which is not the idea expressed in the text. As discussed in
Section 3.3, the verb dictionary adds prefix [99] to codes corresponding to verb
tenses in passive voice. Later, the recoding process (discussed in Chapter 5) uses
this prefix as a cue to correct the coding directionality caused by use of the passive
voice. In this way, dictionary development, the coding algorithm and the recoding
scheme work together to disentangle more complex grammatical structures and re-
duce coding error in the database. When the recoding rules have been applied, the
event is correctly coded as:

202051 → 88104 → 601060

As shown in Table 3.2, the general sequence algorithm begins by searching for the
first actor in the sentence. Once it is found, it switches to the verb dictionary and
looks for the action. However, sometimes news reports mention a series of items
which are not followed by a verb. This particularly common in government press
releases including a list of items. For example consider the following paragraph:

English:

3.4. EVENT CODING ALGORITHMS 27

Army troops arrested a member of a criminal group. Troops seized 6

kilograms of cocaine and other items:

372 packages of Clindamycin phosphate,

two AK-47s,

one R-15 assault rifle,

ammunition.

Spanish:

Tropas del ejercito arrestaron a miembro de un grupo criminal. Las tropas

decomizaron 6 kilogramos de cocaina y otros articulos:

372 paquetes de fosfato de clindamycina,

dos AK-47,

un rifle de asalto R-15,

municiones.

Applying the general coding algorithm, Eventus ID recognizes “Army troops,”
“arrested” and “member of a criminal group” as the first set of source, action
and target. Next, it identifies “troops” “seized” “cocaine” as the second set of
source, action and target in the paragraph. In the next line, the algorithm starts
searching for an actor and identifies “Clindamycin phosphate. Since there are no
more verbs or actors in the line, the algorithm jumps to the next line and starts
searching again for the first actor. In that way, the coding procedure continues
reading the items on the list and detects ” “AK-47,” “R-15 assault rifle” and
“ammunition” as independent items not followed by corresponding actions. The
output of this paragraph is:

202051 → 88104 → 601060
202051 → 88202 → 801022
604021 → →
901013 → →
901014 → →
901021 → →

As this example illustrates, the general coding algorithm starts searching for the first
actor and then continues to look for the verb and the second actor. If the later two
are not found in the text line, the coding algorithm maintains the first actor already
identified and jumps to the next line to resume the search. In consequence, Eventus
ID is capable of extracting more detailed information from complex events, thus
better reflecting the multidimensionality of conflict. Some users might find useful
the information extracted from the list of items useful. As discussed in Chapter 5,
in those cases users might develop a recoding scheme to fill the information in the
incomplete coding lines.

28 CHAPTER 3. EVENT CODING

3.4.2 Partial Sequence Algorithm

The partial sequence algorithm of Eventus ID is useful for identifying more com-
plex grammatical structures such as sentences using present indicative tenses. In
general, the present indicative is used similarly in English and in Spanish. However,
the present indicative tense is more frequently used in Spanish. In English, the
present progressive tense is a finite form of the verb that has the mood, tense, and
person clearly defined. For example, in the sentence “they are arresting a criminal”
the verb “to arrest” is conjugated in the indicative mood, present progressive tense,
third person plural. The present progressive sentence that literally corresponds to
this example in Spanish is “ellos están arrestando a un criminal”. However, in
Spanish one would simply use the present indicative tense; thus the sentence would
read “arrestan a un criminal.” As shown in Table 3.1, this conjugation of the verb
“arrestar” (to arrest) corresponds to the third person of the present indicative.

The present indicative is formed by removing the infinitive ending of the verb (e.g.
taking out the final “ar” from the verb “arrestar”) and replacing it with an ending
that indicates the person performing the action. What makes the analysis in Spanish
more complex is that the conjugation already gives information about the person as
part of the verb, and in consequence the subject of the action is often omitted from
the sentence. To make things even more complex, the present indicative is often
used for referring to events that occurred in the past (historical present). Thus while
the sentence “arrestan a un criminal” literally refers to an action carried out in the
present, it also refers figuratively to a past event.

The use of present indicative is a common grammatical structure in journalistic
narratives in Spanish media (Mart́ınez, Miguel and Vázquez, 2004; Alcoba Rueda,
1983; Nadal Palazón, 2009). According to Gúızar Garćıa (2004), 73 percent of
news headlines in Mexico use the present indicative verb form. There are several
possible reasons for this frequent use. The first might be editorial. Since the present
indicative tense usually omits the subject, sentences using this conjugation tend
to be shorter, making the present indicative more efficient in terms of printing
space. Since newspapers have strict space limitations – determined by the size of
the paper they use for printing and the number of pages – editors may favor the use
of present indicative tenses for making news reports shorter, which might allow for
more reports to be included in daily editions. The second reason may be related to
a stronger psychological impact on readers. Sentences written in present indicative
usually start with the verb, which draws the reader’s attention to the action that
took place. In addition, the present verb form may give a sense of immediacy to
the event. In this way, editors and journalists often use sensationalist – sometimes
lurid – verbs to craft headlines to hook the readers.

The partial sequence algorithm helps code sentences in which the verb is conjugated
in present indicative tense. This feature is particularly useful for event coding from

3.5. LIMITATIONS OF EVENT CODING 29

text written in Spanish because this verb tense is very common in Latin American
media. Since the translation of present indicative from Spanish into English obscures
the nuances of this verb form, the next example is presented in Spanish. Consider
the following sentence:

Spanish:

Arrestan a un criminal

In this sentence, the subject of the action is omitted because of the conjugation
of the verb in present indicative tense. In the absence of a first actor, Eventus
ID uses the partial sequence algorithm to identify “arrestan” (to arrest) as the
action and “a un criminal” (a criminal) as the second actor. In consequence, the
algorithm generates the following event coding:

� → 88104 → 601060

As discussed in Chapter 5, users can develop recoding protocols to fill in the missing
part of the event by assigning a default source actor to specific types of actions.

3.5 Limitations of Event Coding

A language is a system—a set of ordered rules—that enables users to structure
symbols for reference or representation purposes. Different languages (e.g. English,
Spanish, Chinese, mathematical, chemical, gesture, chromatic, etc.) use different
sets of rules and symbols to represent their objects of interest. In natural language
(phonetic and written), these symbols of representation are words. Words are ab-
stractions that constitute the building blocks of language and constitute the key
elements used for reasoning and knowledge. Natural language is often highly com-
plex, and computerized methods of textual analysis fall short in accurately captur-
ing the abstractions represented through language. However, despite this limitation,
automated-coding protocols can be valuable for specific research objectives.

Based on the analysis carried out by Schrodt and Gerner (2012) on the advan-
tages and shortcomings of human and automated coding approaches, Table 3.3
compares the trade-offs between manual and supervised methods across four main
issues. The first group shows trade-offs relating to the characteristics of the coding
project. Supervised textual annotation is better suited for processing large volumes
of documents, whereas human coding is more appropriate for small scale projects.
Automated coding has the advantage of allowing researchers to recode the same
documents in repeated coding periods. Supervised machine coding also allows re-
searchers the possibility of easily modifying or updating dictionaries and recoding

30 CHAPTER 3. EVENT CODING

the entire set of documents with the new dictionaries. This also allows for eas-
ily updating or expanding the project by processing new information. In contrast,
coding projects relying on humans usually carry out the coding stage only once
because recoding would require substantial resources in terms of time and labor.
Sometimes researchers using manual methods discover limitations or problems in
their dictionaries when the coding project is at an intermediate or advanced stage.
In such cases, modifying the dictionaries for the rest of the project would jeopardize
internal consistency, but not modifying them would mean carrying the dictionary
problems or limitations through to the end of the project. Another option would
be to modify the dictionaries and restart the coding from the beginning. However,
scarcity of resources often makes it impractical to recode or update projects using
manual methods.

Table 3.3: Comparative advantages of manual and supervised annotation methods
Criterion Manual coding Supervised coding

Coding project
Volume of documents Small Large
Coding period Once Repeated or continuous
Recoding possibility No Yes
Updating possibility Difficult Easy
Dictionary modification Not recommended Easy
Content of interest
Coding unit Entire document Sentence or paragraph
Syntax characteristics Complex Simple
Content of interest Metaphoric or idiomatic Literal
Bias concerns
Sources of coder bias Several Unique
Concern of inter-coder reliability Considerable Non-existent
Bias caused by coder fatigue Considerable Non-existent
Possibility of information bias Considerable Minimum
Feasibility of the coding project
Coding time Slow Fast
Labor and financial demands High Low

The second group of trade-offs refers to the specific content of interest. Automated
coding is more appropriate when the coding unit consists of sentences or short
paragraphs with simple syntax, and when the researcher is interested in the literal
content of the text. In contrast, manual methods are more appropriate for analyz-
ing the overall content of entire documents and when the coding process requires
analytical abstraction or metaphorical analysis.

The third group refers to concerns of bias introduced by coders or by the infor-
mation sources. Measurement validity is a central concern in both quantitative

3.5. LIMITATIONS OF EVENT CODING 31

and qualitative research (Adcock and Collier, 2001). Systematic coding error may
generate measurement bias, which could lead to erroneous conclusions (Collier and
Brady, 2004; King, Keohane and Verba, 1994; Geddes, 2003). Coding based on
manual methods usually requires human coders to be trained to understand and
apply the rules of the coding protocol. Unfortunately, these efforts are not suffi-
cient to guarantee compliance with the coding rules since human coders often apply
subjective assessment and heuristic principles to classify information (Tversky and
Kahneman, 1974). Increasing the role of coder interpretation and judgment affects
the coding outcome and reduces inter-rater reliability (Sipes, 1976; Harvey, 2008),
a fact largely neglected by researchers (Coppedge and Wolfgang, 1990; Rohner and
Katz, 1970). As noted by Baumgartner, Jones and MacLeod (1998), coder fatigue is
another important source of bias in manual coding. Large projects usually involve
teams of coders reading vast volumes of information. Often individual motivation
and attention diminish as boredom increases. Fatigued coders tend to simply skim
through the materials they are supposed to read carefully, thus potentially missing
some important parts of the information, and they tend to be less meticulous in the
application of complex coding rules. In contrast, automated coding methods elimi-
nate problems of inter-coder reliability by systematically and consistently applying
the same coding criteria. Nevertheless, the dictionary developed by the researcher
remains a potential (yet unique) source of coder bias in automated coding. In addi-
tion, tiredness and boredom are not a concern in computer-generated databases as
the machine never tires.

Another source of bias may come from the information sources used in the coding
project. Due to limited resources and time constraints, manual coding projects tend
to rely on a reduced set of information sources. In conflict research, newspapers re-
main the dominant source of information for studying violence. However, different
sources of information may cover the same events from very different perspectives,
thus generating important consequences for the inferences drawn from the evidence
reported in those sources (Davenport and Ball, 2002; Davenport, 2009). Automated
coding reduces the effect of specific newspapers by simultaneously processing a large
number of information sources. Increasing the number of information sources re-
duces the risk of under-reporting due to coverage bias and helps minimize ideological
bias caused by specific political views.

Finally, the fourth group of trade-offs refers to the resources required by different
coding strategies. Manual coding usually requires a substantial investment in terms
of time, labor and financial resources. Unfortunately, research projects often face
significant constraints that have to be weighed when assessing the overall feasibil-
ity of the project. Machine-based protocols offer an alternative that substantially
reduces the time and financial demands for some types of coding projects that may
increase the feasibility of research endeavors when there are budgetary constraints.
However, as reflected in Table 3.3, automated coding may not be the best strategy

32 CHAPTER 3. EVENT CODING

for all projects and researchers have to carefully evaluate the trade-offs between
manual and machine-assisted methods.

Natural language processing concerns the computer-aided analysis of (natural) lan-
guage produced by humans. Due to the inherent complexities and irregularities of
natural language, there is no single best automated textual analysis method (Grim-
mer and Stewart, 2013). The relevance and accuracy of a method largely depend on
the research objective. In projects focused on recognizing specific word categories
in the text corpus, supervised textual annotation requiring human involvement or
supervision tends to generate more accurate results than fully automated methods
(Bigert, 2005). As discussed by other authors (Schrodt, 2009; Schrodt and Gerner,
1994, 2012), the quality of supervised event coding methods depends on three key
factors; the effectiveness of the coding algorithm, the accuracy of the dictionaries,
and the quality of the text.

Despite the flexibility of coding procedures and the development of encompassing
dictionaries, Eventus ID is not a silver bullet. Therefore, users are advised to
adjust their expectations. In particular, Eventus ID has the following specific
limitations:

• The flexibility of the general and partial event coding algorithms implemented
in Eventus ID constitute an improvement over more rigid coding protocols.
This feature is particularly useful for improving the accuracy of event coding
from text written in Spanish. However, as discussed before, the lack of stem-
ming applications in Eventus ID demands a greater effort from the user in
developing detailed actors and verbs dictionaries. Having precise, comprehen-
sive lists of actors and verbs is therefore crucial for effective coding.

• The complexity of grammatical rules and the intricacy of semantic construc-
tions of text written in Spanish represent an important challenge for the ac-
curacy of the coding protocol. Unfortunately, the quality of text is usually
beyond the control of the researcher. In consequence, there are limits to the
accuracy of event coding text in Spanish using Eventus ID. Therefore, it is
crucial for researchers to validate the precision of their automated text anal-
ysis, a topic discussed in Chapter 5.

• It is important to remind users that Eventus ID is designed to identify
discrete events contained in the text source. In consequence, the performance
for detecting specific counts mentioned in the text is limited, especially if
those specific quantities are not specified in the dictionaries. For example,
consider the following sentence “The Army seized 227 grams of cocaine.”
Given a basic set of dictionaries, the program would be able to identify “The
Army” as the source, “seized” as the action and “cocaine” as the target.

3.5. LIMITATIONS OF EVENT CODING 33

However, if the actors dictionary lacks an explicit entry specifying “227 grams

of cocaine”, the program would not be capable of identifying this precise
quantity. Users interested in detecting specific quantities mentioned in the
text should develop their own detailed dictionaries including explicit counts
for each of the items under study. As expected from this example, developing a
list of quantities from 0 to a possible maximum number, expressed in different
units (e.g. grams, kilograms, pounds, tonnes, pills, packages, etc.), for a wide
variety of drugs (e.g. cocaine, opium, LSD, etc.) can easily turn into an
daunting task.

34 CHAPTER 3. EVENT CODING

Chapter 4

Event Location

The features of Eventus ID described in Chapter 3 enable pieces of information
to be extracted from the source text that describe who did what to whom and
when the event took place. However, in order to provide a complete account of
the event, it is also crucial to know where the episode occurred. Eventus ID is
especially suited for addressing this need as the program is capable of identifying the
location of event data at two sub-national levels of analysis (state and municipal)
when the information is provided in the text corpus. Having georeferenced event
data allows fine-grained analysis of the interactions between actors across time and
space. Although the event location function is discussed separately in this chapter,
this facility is fully integrated into Eventus ID and is performed automatically
when the program is run as indicated in Section 3.1.

In general terms, the event location protocol works as follows. Eventus ID uses
the output file generated in the event identification procedure and searches for the
location of the event in the groups of text. The software uses dictionaries of states
and municipalities in order to identify the locality mentioned in the original source.
In addition, due to the complexities of identifying localities, the event location pro-
tocol includes a filter dictionary for disambiguation that prevents certain words or
phrases from being erroneously classified as geographic references.

4.1 Location Dictionaries

Georeferencing event data using Eventus ID requires two different location dictio-
naries, one with a list of states and the other with the list of municipalities. The
program uses these dictionaries as categories for pattern recognition of event loca-
tions in the text corpus. Both location dictionary files must be in plain text format

35

36 CHAPTER 4. EVENT LOCATION

(.txt). Each line must begin with the numeric code, followed by textual name of the
corresponding location. These two elements should be separated by tabs (→). The
lists of states and municipalities and their corresponding codes used in this example
and in the DEMO file come from the National Geostatistical Framework generated
by the Mexican census bureau, Instituto Nacional de Estad́ıstica y Geograf́ıa (IN-
EGI) (2011). Using official locality codes enables the event data generated to be
readily cross-referenced with other databases using the same codes for describing
demographic, economic or geographic attributes of each location. Of course, users
can use their own location dictionaries and codes.

The following list shows an example of the states dictionary:

1 → Aguascalientes
2 → Baja California
3 → Baja California Sur
4 → Campeche
5 → Coahuila

This is an example of the list of municipalities:

1002 → Asientos
2004 → Tijuana
3001 → Comondu
4010 → Calakmul
5025 → Piedras Negras

The need for disambiguation implies the use of the filter dictionary in order to
prevent the event location algorithm from identifying false positives. In the original
research on drug violence that motivated the development of Eventus ID, (Osorio,
2013) realized that location ambiguity problems can emerge from the fact that some
criminal organizations are named after the states or cities where they operate. That
is the case of “El Cartel de Sinaloa,” “El Cartel de Tijuana,” “El Cartel de Juarez”
and “El Cartel de Jalisco Nueva Generacion,” among others. Eventus ID uses the
filter dictionary to reduce the risk of the algorithm erroneously coding proper names
as the names of locations where events took place.

The filters dictionary also performs other nuanced disambiguation tasks. A recur-
rent source of location error comes from local newspapers that have the state or
municipality as part of their name (e.g. “El Diario de Juárez”). Another source of
potential location error comes from news reports mentioning the registration state
of vehicle license plates when they are seized by the authorities. For example, a
report indicating that a vehicle with plates from state “X” is intercepted in loca-
tion “Y” on its way to destination “Z” can cause confusion in the place detection
protocol. The Eventus ID location filter dictionary helps to minimize the risk of
coding error caused by these types of reports. Like the other dictionary files, the
list of filters should be contained in a plain text file (.txt). The first element in each
line must be a numeric code “0”, followed by a tab, and then the text corresponding

4.2. EVENT LOCATION USING EVENTUS ID 37

to the exclusion category. Assigning the code “0” gives the program the instruction
to ignore that match in the corpus of text.

The following list shows an example of the filters dictionary:

0 → Cartel de Sinaloa
0 → Cartel de Juarez
0 → Cartel de Tijuana
0 → 3/a Zona Militar La Paz BCS
0 → Operativo Conjunto Michoacan
0 → Operacion Conjunta Nuevo Leon

4.2 Event Location Using Eventus ID

To identify the location of an event, Eventus ID combines the following five files.
Users can refer to the description of these files in Section 3.1.

• corpus DEMO.txt is the corpus of text to be analyzed.

• codigos Events DEMO.txt is the output file of numerical event codes generated
by the event coding procedure.

• Location dictionaries: lists of places and their codes.

– states DEMO.txt is the dictionary containing the list of states.

– municipalities DEMO.txt contains the list of municipalities and towns.

• filters DEMO.txt is a set of items for disambiguating locations.

The event location coding procedure is outlined in Table 4.1. In general, the location
algorithm uses the event database generated by the event coding algorithms and
identifies the source paragraph from which each event was extracted. It then reads
the entire text corpus in order to identify the specific paragraph containing that
event. Once the paragraph is identified, the algorithm uses the information provided
by the location dictionaries to search for the name of a state or municipality in the
paragraph. If a location is identified, the protocol uses the filters dictionary to verify
whether the location should be assigned or discarded. If the location is not filtered,
the algorithm saves the location code next to the corresponding event in the event
data set. If no location is found in the paragraph, the algorithm expands the search
to the rest of the document (Chapter 2 discusses the nomenclature and formatting
characteristics of the text corpus that enable all paragraphs that constitute a single
document to be identified). If a state or municipality is recognized in the corpus,
the protocol checks whether it should be filtered or not. If it passes the filter, the

38 CHAPTER 4. EVENT LOCATION

algorithm saves the code of the location next to its corresponding event code in
the event database. The coding protocol is capable of saving the names of multiple
localities as they are mentioned in the paragraph. If no location is identified in the
document, the protocol stops searching for the location of this event and moves to
the next episode in the event coding database.

Table 4.1: Eventus ID event location algorithm
1) Identify an event
- Load the event database.
- Select an event from a new line.
- Identify the paragraph (FileName P1 P2) from which the event was extracted.
- Use the entire paragraph name as searching criteria.
2) Identify the paragraph in the text corpus.
- Load the text corpus.
- Search for the paragraph from which the event was extracted.
3) Search for the location of the event in the paragraph.
- Load the location dictionaries (states and municipalities).
- Use the items of the location dictionaries as searching criteria.
- Start searching for the location in the source paragraph.
- If the location is found, store the code.
- Keep searching for locations and storing them until the end of the paragraph.
- If there are no more locations in the paragraph, then go to Step 5.
- If no location is found in the paragraph, go to Step 4.
4) Expand the search to the rest of the document.
- Select the remaining paragraphs belonging to the same document (FileName).
- Search for the location in all paragraphs of the document.
- Begin searching in the first paragraph.
- If the location is found in the document, store the location code and go to Step 5.
- If the location is not found in the document, stop searching and go to Step 1.
5) Filter the location.
- Load the filters dictionary.
- Verify that the location identified does not match any item in the filters dictionary.
- If the location matches a filter, go back to Step 3.
- If the location does not match a filter, go to Step 6.
6) Save the location.
- Save the location at the end of the coded event line in the event database.
- Start again from Step 1.

For example, consider the following paragraph:

English:

In a press release issued yesterday, the Mexican government announced

that troops deployed in the municipality of San Luis Rio Colorado, Son.

seized 227 packages of marijuana with a total weight of two tonnes and

250 kilograms while patrolling rural roads in the area.

4.3. GEOREFERENCED EVENT DATA 39

Spanish:

En un comunicado de prensa emitido el dia de ayer, el gobierno mexicano

informo que tropas destacamentadas en el municipio de San Luis Rio Col-

orado, Son. decomisaron paquetes de mariguana con un peso total de dos

toneladas y 250 gramos, mientras patrullaban caminos rurales del area.

Given the right set of actors, verbs and location dictionaries, Eventus ID will
be capable of recognizing the key components of the event as “troops” (source),
“seized” (action) and “packages of marijuana” (target). In addition, the location
algorithm will be able to identify the municipality of “San Luis Rio Colorado” in
the state of “Sonora” (Son.) as the location where the event took place.

4.3 Georeferenced Event Data

The location algorithm makes use of the numerical or textual output files gener-
ated at the event coding stage and, if a location is assigned, adds the coded lo-
cation information. Depending on the option selected by the user in the location
coding configuration (see Step 12 in Section 3.1.1), the event location will gener-
ate an output file in plain text format (.txt) containing the numeric codes of lo-
cations (codigos Geo DEMO.txt), the corresponding text (textos Geo DEMO.txt) or
both files. The final output of this procedure is a file containing the source, action,
target, date and location of an event. In this way, Eventus ID provides integrated
event information on who did what to whom, when and where.

The following example illustrates the content of the output file of georeferenced
events indicating the state and municipality codes. The entries actor1, verb, ac-
tor2, state1 and mun1 can be numerical codes or textual annotations depending
on the output file generated by Eventus ID (see Section 3.1).

date1 FileName P1 P1 actor1 verb actor2 Edos state1 Muns mun1
date1 FileName P2 P2 actor1 verb actor2 Edos i state1 Muns i mun1
date2 FileName P1 P3 actor1 verb actor2 Edos state1 Muns mun1
date3 FileName P1 P4 actor1 verb actor2 Edos state1 Muns mun1
date3 FileName P2 P5 actor1 verb actor2 Edos i state1 Muns i mun1
date3 FileName P3 P6 actor1 verb actor2 Edos i state1 Muns i mun1
date4 FileName P1 P7 actor1 verb actor2 Edos state1 Muns mun1

40 CHAPTER 4. EVENT LOCATION

4.4 Imputed events

As the previous example shows, the output contains two labels indicating the infor-
mation that corresponds to the geographic location of events. The delimiter “Edos”
marks the begining of state codes and the lable “Mun” indicates the municipality
codes. The output can contain as many state and municipality codes as mentioned
in the paragraph of press release under analysis. For simplicity, this example con-
siders only one state and municipality code.

According to the event location algorithm (see Steps 3 and 4 in Table 4.1), Eventus
ID is capable of identifying the place of occurrence of an event even when such
information is not contained in the specific paragraph being coded. To do so, the
program gathers information from other parts of the news report and imputes the
name of the locality when it is found elsewhere in the document. As it is often
the case, press releases and news reports usually indicate the location of the event
in the header or the leading line, and then describe the episode in further detail
without mentioning the event locality again. To reduce the risk of missing valuable
georeferenced data, this feature relies on pieces of information contained in the
broader document to impute the event location. The program only extends the
location search up to the document level when no georeferencing information is
identified at the paragraph level. However, the location search is not extended to
the rest of the corpus. The delimiter labels “Edos i” and “Mun i” in the output file
indicate the state and municipality codes that were imputed from other paragraphs
of the document.

Chapter 5

Validation and Recoding

Measurement validity is a central concern for social scientists whether they use
quantitative or qualitative methods (King, Keohane and Verba, 1994; Adcock and
Collier, 2001; Collier and Brady, 2004; Bollen, 1989; Goertz, 2005). Measurement
validity is achieved when the scores meaningfully capture the ideas contained in the
corresponding concepts. Simply stated by Bollen (1989, 184), a score is valid if “a
variable measures what it is supposed to measure.” According to Adcock and Collier
(2001), measurement validity should be understood in relation to the congruency
between concepts and observations. These authors propose an analytical framework
for evaluating measurement validity in terms of the degree of congruency at four
levels:

1. Background concept. This level encompasses the constellation of diverse mean-
ings associated with a given concept.

2. Systematized concept. This level contains the specific formulation or definition
of a concept adopted by a particular researcher.

3. Indicators. This level refers to the procedure used for systematically building
the measures associated with the definition.

4. Scores for cases. This level refers to the numerical scores or qualitative classi-
fication assigned as values for each measure.

In general terms, the framework indicates that a measure is valid to the extent
that the scores (level 4) correspond to a set of indicators (level 3), that can be
meaningfully interpreted in terms of the definition (level 2) used to represent a
broader concept (level 1).

41

42 CHAPTER 5. VALIDATION AND RECODING

Eventus ID carries out a score generation process primarily operating at the fourth
level of the analytical framework. From a narrow point of view, the machine-
generated database is valid to the extent that the dictionaries and the coding
protocol accurately identify in the set of events relevant to the researcher in the
text corpus. However, a broader validity criteria should take into consideration
the alignment between the machine-generated data and the theoretical conceptual-
ization conceived by the researcher, as well as the systematization of the concept
and development of indicators. The following sections present recommendations for
assessing the validity of the machine-generated event data from a narrow perspec-
tive (level 4) and leave the broader conceptualization effort (levels 1–3) up to the
researcher.

5.1 Validation

Validate, validate, validate! This is the main recommendation proposed by Grimmer
and Stewart (2013) and reemphasized in this manual. In general terms, the objective
of the validation procedure is to reduce the risk of type I and II errors. Users
may reduce the risk of false negatives (type II error) by developing a detailed,
comprehensive list of actors, verbs and locations capable of identifying the behavior
of interest. In addition, users may develop a set of exceptions to the actor and verb
dictionaries and location names to reduce the risk of false positives (type I error)
that could lead to erroneously identifying an event that did not take place.

A basic validation method of event coding accuracy consists of three steps:

Step 1. Generate a human coding standard: First, select a random sample
of documents or paragraphs from the corpus of text. Next, have a team of human
coders identify event data in the sample corpus. Coders must follow the steps of the
event and location algorithms implemented in Eventus ID (see Sections 3.4 and
4.2). The human-generated database serves as the golden standard for assessing the
validity of the automated coding procedure.

Step 2. Compare human and machine coding: Use Eventus ID to generate
an initial version of the event database. Then compare each item contained in
the human-generated standard database with the computerized coding outcome.
The discrepancies between the machine and human-generated database will help to
identify the items that need to be modified in order to improve the quality of the
automated coding scheme.

Step 3. Fine-tune the coding protocol: Eventus ID offers a wide degree of
flexibility for users to generate coding protocols that best fit their research needs.
Informed by the discrepancies between the human and computer-generated event
data, users have these options available for improving the accuracy of the coding
protocol:

5.2. ACCEPTING DEFEAT 43

• Improve the actor and verb dictionaries: The most common way to
improve the accuracy of the coding protocol is by fine-tuning the dictionaries
of actors and verbs. This usually requires the inclusion of additional nouns
and verbs not contained in the previous versions of the dictionaries. Users
may also need to use the null code [- - -] to disambiguate specific cases.

• Consider using two actor dictionaries: Eventus ID offers the possibility
of using different actor dictionaries to identify the source and target of events.
When doing so, users should bear in mind the sequence of actor identification
implemented by the general and partial coding algorithms, as well as the
quality of the source text.

• Select the appropriate event coding algorithm: The program gives re-
searchers the possibility to code events using only the general sequence proce-
dure or also using the partial sequence algorithm. Researchers may assess the
accuracy of the event identification output generated with one or both coding
algorithms and determine which option works best for the project at hand.

• Improve location dictionaries and filters: Identifying the location of
an event can be a challenging task. Users may need to enhance and refine
their state and municipality dictionaries in order to increase the probability
of identifying a match in the source text. In addition, and perhaps most
importantly, users may need to develop a robust set of location filters to avoid
the risk of erroneously identifying some nouns as event localities.

As shown in Figure 1.1 in Chapter 1, the validation process consists of a cycle of
several iterations of coding, validation, tuning and recoding and so on. After the first
coding outcome, the user evaluates the discrepancies between human and machine
coding and uses the information to improve the coding protocol. This learning is
used for a second round of machine coding, which is then evaluated against the
human standard and used to inform further modifications to the coding protocol.
Carrying out several iterations of this process will increase convergence between the
human coding and the machine-generated database. However, researchers must be
aware that there is no 100 percent accurate coding protocol. Due to the complexities
of natural language, it is extremely difficult to eliminate all discrepancies between
human and computerized coding.

5.2 Accepting Defeat

Unfortunately, despite the effort of developing detailed dictionaries and taking ad-
vantage of the flexibility offered by Eventus ID, poorly written text may still

44 CHAPTER 5. VALIDATION AND RECODING

generate coding error. Since the quality of text is generally outside the control of
the researcher, users may have no other option than to accept defeat and report a
quantitative measure of coding error. For example, consider the following excerpt
from a real news report (Proceso, 2014):

Spanish:

El Grupo de Coordinacion Tamaulipas, que se integra con fuerzas de

seguridad estatales y federales, comunica que tres civiles armados

perdieron la vida en el municipio de Matamoros, luego de que atacaron

a elementos de la Secretaroa de Marina que realizaban labores de vigi-

lancia en helicoptero, quienes los abatieron tras repeler la agresion.

English:

The Tamaulipas Coordination Group, integrated by federal and state se-

curity forces, announces that three armed civilians lost their lives

in the Matamoros municipality after they attacked Navy troops conduct-

ing surveillance activities in a helicopter, who cut them down after

repelling the attack.

Human coders would be likely to extract the following three events from this para-
graph:

armed civilians → attacked → Navy troops
Navy troops → repelled → armed civilians
Navy troops → killed → three armed civilians

The syntactic structure in this paragraph is so complicated (if not cluttered) that
the event coding algorithms of Eventus ID would be unlikely to be capable of
extracting these three events; that is, of generating an accurate description of who
did what to whom. Unfortunately, sometimes the poor quality of the original text
defeats the researcher’s ability and efforts.

5.3 Recoding

After generating a validated database of event data using Eventus ID, some users
might wish to carry out an additional recoding to improve the accuracy of the
database. We have not developed a recoding function embedded in Eventus ID,
but manipulating event data should be straightforward with statistical programs
such as Stata or R. The demonstration file (Eventus ID DEMO.zip) contains a set
of Stata dofile examples for recoding and aggregating the raw event data generated
by Eventus ID.

5.3. RECODING 45

Data recoding might be particularly necessary for making sense of events extracted
from passive voice sentences. As noted in Chapter 3, the use of passive voice is quite
common in news reports written in Spanish. Sentences using the passive voice form
invert the order of the subject and object in the syntactic structure, which might
lead to misinterpretation of the coded event when analyzed out of its content. For
example, consider the following sentence in passive voice:

A member of a criminal group was arrested by Army troops.

Given the structure of the sentence, Eventus ID will code this event as:

Textual: member of a criminal group → was arrested → Army troops

Numeric: 601060 → 99104 → 202051

Syntactically, the sentence presents first the object, then the verb (in past simple
sith a passive construction) and finally the subject. Given this structure, the coding
protocol will identify first “member of a criminal group”, then the verb “arrested”
and finally “Army troops.” However, by focusing exclusively on the numeric codes
(as the statistical analysis software would do), the codification would not be able
to accurately reflect the directionality of the event as indicated in the paragraph.
In fact, the decontextualized reading of the numeric code might wrongly suggest
that “a member of a criminal group” (601060) “arrested” (99104) “Army troops
(202051),” which is not the idea presented in the paragraph.

In this case, users might develop a recoding protocol to reverse the object-verb-
subject structure in a passive sentence and generate a subject-verb-object syntactic
structure. To facilitate the task of recoding events extracted from passive sentences,
we suggest including the prefix 99 before the actual verb code (see Section 3.3). This
prefix helps users to identify grammatical structures in passive voice and correct the
event directionality as follows:

Textual: Army troops → arrested → member of a criminal group

Numeric: 202051 → 99104 → 601060

46 CHAPTER 5. VALIDATION AND RECODING

5.4 Aggregation and Duplicates

Eventus ID is designed for identifying discrete events mentioned in the text source;
specifically detecting the source, action, target, date and location of each event.
Given the temporal and geographic distribution of events, the output file is likely to
generate a list of discreet event codes scattered across time and space. This type of
information is not readily structured in a regular time-series cross-sectional structure
for conducting statistical analysis or data visualization. To conduct quantitative
analysis of the output generated by Eventus ID, users must aggregate the data
into regular intervals of time (T) (e.g. year, month, day) and spatial units (N) (e.g.
state or municipal level) to make up a panel data structure (T ×N).

Stata offers straightforward procedures such as the collapse command for aggre-
gating data into different spatial and temporal units (see http://www.stata.com/

help.cgi?collapse). Depending on their specific research objectives, users might
use this command to aggregate the data by calculating the counts, raw sums or
averages of event data.

It is important to note that users employing multiple sources of information are
likely to obtain multiple reports of some events. As mentioned by Davenport and
Ball (2002) and Davenport (2009), the media tends to over-report highly prominent
events while other instances of lesser prominence usually receive scant media atten-
tion. Besides multiple independent reports of the same episode, another source of
artificial event inflation might come from situations being described several times
within the same news report. In such cases, repetition and redundant information
can cause Eventus ID to identify the same event multiple times.

To avoid the risk of artificially inflating events due to over-reporting, users should
consider eliminating multiple coded events. The usual recommendation is to keep
only one event per day at the smallest spatial unit of analysis, and eliminate dupli-
cate records on that same unit-day. The Stata command duplicates provides an
easy way of reporting, obtaining examples, listing, browsing, tagging and eliminat-
ing duplicate observations (for details see http://www.stata.com/support/faqs/

data-management/duplicate-observations/).

http://www.stata.com/help.cgi?collapse
http://www.stata.com/help.cgi?collapse
http://www.stata.com/support/faqs/data-management/duplicate-observations/
http://www.stata.com/support/faqs/data-management/duplicate-observations/

Chapter 6

Special Coding Projects

6.1 Identifying the Location of Actors

Eventus ID has the flexibility to be adapted to a wide variety of research objec-
tives. In some cases, users might be interested in special coding projects focused
on detecting particular pieces of information without taking full advantage of the
general and partial event coding algorithms nor the two-level location capabilities of
Eventus ID. For example, consider a research project in which the researcher aims
to identify the presence of specific actors at the state level, without distinguishing
their actors nor their distribution at the municipal level.

To carry out a project of this type, users can use the blank DEMO.txt file as a
wild-card to cause Eventus ID to ignore some searching criteria. The blank file
blank DEMO.txt is an empty document in plain text format (.txt) that can be used
as a substitute for any combination of actors, verbs and location dictionaries in
Eventus ID. Since the file contains no information, it provides no categories for
the program to search for in the text corpus.

In order to design a coding protocol for the project described in the above example,
the user could use a configuration file config DEMO.txt with the following content:

actors DEMO.txt

blank DEMO.txt

blank DEMO.txt

corpus DEMO.txt

Events DEMO.txt

blank DEMO.txt

47

48 CHAPTER 6. SPECIAL CODING PROJECTS

states DEMO.txt

filters DEMO.txt

Geo DEMO.txt

3

The first entry instructs Eventus ID to use the actor dictionary to identify the
source of the event. The second and third entries use the blank file to prevent the
program from searching for actions or targets. The fourth item points to the text
corpus, and the fifth item provides the name for the event coding output file. In the
sixth line, the blank file causes municipal location codes to be ignored. The seventh
item uses the states dictionary to enable the location of the actors to be identified
at the state level. The eight item enables the use of filters for disambiguation of
places, and the ninth item indicates the name of the geo-referenced outcome file.
The tenth line instructs the program to generate both numeric and textual versions
of the output file. In this way, the user can take advantage of the coding flexibility
of Eventus ID to generate a custom coding protocol that identifies actors at the
state level while ignoring other information.

6.2 Locating Specific Behaviors

As another example, if users are primarily interested in identifying specific actions
without being concerned about who the perpetrators or the targets, then they can
use the following config DEMO.txt file:

blank DEMO.txt

verbs DEMO.txt

blank DEMO.txt

corpus DEMO.txt

Events DEMO.txt

blank DEMO.txt

states DEMO.txt

filters DEMO.txt

Geo DEMO.txt

3

In this example, the configuration uses the blank file to ignore the source and target
actors and focus specifically on identifying the actions in the list of verbs. The
configuration file also prevents Eventus ID from searching for localities at the
municipal level. The outcome of this special coding structure would be a series of
specific actions identified at the state level.

Appendix A

Version Release History

A.1 Version 1.0, (beta) (May 2013)

Initial development of Eventus ID features. Version not public.

Works on Unix operating systems.
Corpus formatted in 80-character length limit.
General and partial event coding algorithms.
Event location facility works independently.
Basic interface.

A.2 Version 2.0 (June 2014)

First public version of Eventus ID.

Adapted to run on Windows operating system.
Corpus formatted in single line with no length limit.
Refinement of general and partial event coding algorithms.
Event location facility is fully integrated into the program.
Interface improvement.
Enable configuration file (config.txt).

49

50 APPENDIX A. VERSION RELEASE HISTORY

Bibliography

Adcock, Robert and David Collier. 2001. “Measurement Validity: A Shared Stan-
dard for Qualitative and Quantitative Research.” The American Political Science
Review 95(3):529–546.

Alcoba Rueda, Santiago. 1983. “El presente de los titulares de prensa: no déıctico,
protiempo anafófico.”.
URL: http://dfe.uab.es/dfeblog/salcoba/files/2008/10/presente titulares tiempo anafora.pdf

Baumgartner, Frank, Bryan Jones and Michael MacLeod. 1998. “Lessons from the
Trenches: Ensuring Quality, Reliability, and Usability in the Creation of a New
Data Source.” The Political Methodologist 8(2):1–10.

Beieler, John. 2013. “Mapping Protest Data.”. Last accessed on 4/24/2014.
URL: http://johnbeieler.org/blog/2013/07/03/mapping-protest-data/

Bigert, Johnny. 2005. Automatic and Unsupervised Methods in Natural Language
Processing PhD thesis KTH Royal Institute of Technology.
URL: http://www.diva-portal.org/smash/get/diva2:7478/FULLTEXT01.pdf

Bollen, Kenneth A. 1989. Structural Equations with Latent Variables. New York:
Wiley.

Collier, David and Henry E Brady. 2004. Rethinking Social Inquiry: Diverse Tools,
Shared Standards. Maryland: Rowman & Littlefield Publishers.

Coppedge, Michael and H. Reinicke Wolfgang. 1990. “Measuring Polyarchy.” Studies
in Comparative International Development 25(1):51–72.

Davenport, Christian. 2009. Media Bias, Perspective, and State Repression: The
Black Panther Party. New York: Cambridge University Press.

Davenport, Christian and Patrick Ball. 2002. “Views to a kill: exploring the impli-
cations of source selection in the case of Guatemalan State Terror, 1977-1995.”
Journal of Conflict Resolution 46(3):427–450.

Geddes, Barbara. 2003. Paradigms and Sand Castles: Theory Building and Research
Design in Comparative Politics. Ann Arbor, MI: University of Michigan Press.

51

52 BIBLIOGRAPHY

Goertz, Gary. 2005. Social Science Concepts: A User’s Guide. Princeton, New
Jersey: Princeton University Press.

Grimmer, Justin and Brandon M. Stewart. 2013. “Text as Data: The Promise and
Pitfalls of Automatic Content Analysis Methods for Political Texts.” Political
Analysis Published.
URL: http://pan.oxfordjournals.org/content/early/2013/01/21/pan.mps028.abstract

Gúızar Garćıa, Elizabeth. 2004. El uso de los verbos en los titulares de cinco diar-
ios de la ciudad de México: análisis sintáctico PhD thesis Universidad Nacional
Autónoma de México Mexico: .

Hanna, Alex. 2014. “Assessing GDELT with handcoded protest data.”. Last
accessed on 4/24/2014.
URL: http://badhessian.org/2014/02/assessing-gdelt-with-handcoded-protest-
data/

Harvey, Anna. 2008. What Makes a Judgment ”Liberal”? Coding Bias in the United
States Supreme Court Judicial Database. In 3rd Annual Conference on Empirical
Legal Studies Papers.
URL: http://papers.ssrn.com/sol3/papers.cfm?abstract id=1120970

Instituto Nacional de Estad́ıstica y Geograf́ıa. 2011. “Marco Geoestad́ıstico Na-
cional.”.
URL: http://www.inegi.org.mx/geo/contenidos/geoestadistica/default.aspx

King, Gary, Robert O. Keohane and Sidney Verba. 1994. Designing Social Inquiry.
Princeton University Press.

Leetaru, Kalev and Philip A. Schrodt. 2013. “GDELT: Global Data on Events,
Location and Tone, 1979-2012.”.

Lewis, M. Paul, Gary F. Simons and Charles D. Fennig. 2013. “Summary by lan-
guage size.”. Last accessed on 6/10/2014.
URL: http://www.ethnologue.com/statistics/size

Mart́ınez, Francisco, Lucas Miguel and Cristian Vázquez. 2004. “La titulación en
la prensa gráfica.”.
URL: http://www.perio.unlp.edu.ar/grafica1/htmls/apuntescatedra/apunte titulacion.pdf

Moore, Will H. 2014a. “No More Fountains of Youth/Pots o’ Gold: Conceptualiza-
tion and Events Data (Part 1).”. Last accessed on 4/24/2014.
URL: http://willopines.wordpress.com/2014/03/03/no-more-fountains-of-
youthpots-o-gold-conceptualization-and-events-data-part-1/

Moore, Will H. 2014b. “No More Fountains of Youth/Pots o’ Gold: Conceptualiza-
tion and Events Data (Part 2).”. Last accessed on 4/24/2014.
URL: http://willopines.wordpress.com/2014/03/04/no-more-fountains-of-
youthpots-o-gold-conceptualization-and-events-data-part-2/

BIBLIOGRAPHY 53

Nadal Palazón, Juan. 2009. El Discurso Ajeno en los Titulares de la Prensas Mex-
icana. Mexico City: Universidad Nacional Autónoma de México.

Open Event Data Alliance. 2014. “Objectives - Open Event Data Alliance.”. Last
accessed on 6/10/2014.
URL: http://openeventdata.org/

Osorio, Javier. 2013. “Hobbes on Drugs: Understanding Drug Violence in Mexico.”.

Osorio, Javier and Alejandro Reyes. 2014a. “Web 2 Eventus.”.
URL: http://www.javierosorio.net/#!software/cqbi

Osorio, Javier and Alejandro Reyes. 2014b. “Web Text Downloader.”.
URL: http://www.javierosorio.net/#!software/cqbi

Price, Megan and Anita Gohdes. 2014. “Searching for Trends: Analyzing Patterns
in Conflict Violence Data.”. Last accessed on 4/24/2014.
URL: http://politicalviolenceataglance.org/2014/04/02/searching-for-trends-
analyzing-patterns-in-conflict-violence-data/

Proceso, Redacción. 2014. “Abaten a tres sicarios que atacaron helicóptero de la
Semar.”.
URL: http://www.proceso.com.mx/?p=370045

Rodŕıguez, Juan Manuel. 2001. “Errrores cumunes en el lenguaje period́ıstico: In-
vasión Pasiva.” Revista Latinoamericana de Comunicación CHASQUI .
URL: http://www.redalyc.org/pdf/160/16007609.pdf

Rohner, Ronald P. and Leonard Katz. 1970. “Testing for Validity and Reliability in
Cross-Cultural Research.” American Anthropoligist 72:1068–1073.

Schrodt, Philip A. 2009. “TABARI. Textual Analysis by Augmented Replacement
Instructions.”.

Schrodt, Philip A. 2014. “The legal status of event data.”. Last accessed on
6/10/2014.
URL: http://asecondmouse.wordpress.com/2014/02/14/the-legal-status-of-
event-data/

Schrodt, Philip A. and Deborah Gerner. 1994. “Validity Assessment of a Machine-
Coded Event Data Set for the Middle East, 1982-1992.” American Journal of
Political Science 38:825–854.

Schrodt, Philip A. and Deborah Gerner. 2012. Fundamentals of Machine Coding. In
Analyzing International Event Data: A Handbook of Computer-Based Techniques.
URL: http://eventdata.psu.edu/papers.dir/AIED.2012.ch2.pdf

Sipes, R. G. 1976. “A Test For Coder Bias.” Cross-Cultural Research 11(3):149–168.

54 BIBLIOGRAPHY

Steinert-Threlkeld, Zachary. 2014. “Machine Coded Events Data and Hand-Coded
Data.”. Last accessed on 4/24/2014.
URL: http://politicalviolenceataglance.org/2014/03/19/machine-coded-events-
data-and-hand-coded-data/

Tversky, A and D Kahneman. 1974. “Judgment under Uncertainty: Heuristics and
Biases.” Science (New York, N.Y.) 185(4157):1124–31.

Ulfedler, Jay. 2013a. “Road-Testing GDELT as a Resource for Monitoring Atroci-
ties.”. Last accessed on 4/24/2014.
URL: https://dartthrowingchimp.wordpress.com/2013/05/02/road-testing-gdelt-
as-a-resource-for-monitoring-atrocities/

Ulfedler, Jay. 2013b. “The Future of Political Science Just Showed Up.”. Last
accessed on 4/24/2014.
URL: https://dartthrowingchimp.wordpress.com/2013/04/10/the-future-of-
political-science-just-showed-up/

Ward, Michael, Andreas Beger, Josh Cutler, Matthew Dickenson, Cassy Dorff and
Ben Radford. 2013. “Comparing GDELT and ICEWS Event Data.”. Last accessed
on 4/24/2014.
URL: http://mdwardlab.com/sites/default/files/GDELTICEWS 0.pdf

Weller, Nicholas and Kenneth McCubbins. 2014. “Raining on the Parade:
Some Cautions Regarding the Global Database of Events, Language and Tone
Dataset.”. Last accessed on 4/24/2014.
URL: http://politicalviolenceataglance.org/2014/02/20/raining-on-the-parade-
some-cautions-regarding-the-global-database-of-events-language-and-tone-
dataset/

	Introduction
	Introduction
	Event Data
	Overview of Eventus ID Coding Process
	Downloading Eventus ID and System Requirements
	Downloading the Software
	System Requirements and Additional Software

	Font conventions
	Share Your Papers and Data
	About the name Eventus ID

	The Text Corpus
	Required Software and Files
	News Report File Naming Convention
	Using Web2Eventus to Format the Corpus of Text
	Output File: Corpus of Text for Eventus ID
	Corpus Example in the Demonstration File

	Event Coding
	Event Coding Using Eventus ID
	Running Eventus ID Step By Step
	Running Eventus ID ``Quick and Dirty''

	Actor Dictionary
	Verb Dictionary
	Event Coding Algorithms
	General Sequence Algorithm
	Partial Sequence Algorithm

	Limitations of Event Coding

	Event Location
	Location Dictionaries
	Event Location Using Eventus ID
	Georeferenced Event Data
	Imputed events

	Validation and Recoding
	Validation
	Accepting Defeat
	Recoding
	Aggregation and Duplicates

	Special Coding Projects
	Identifying the Location of Actors
	Locating Specific Behaviors

	Version Release History
	Version 1.0, (beta) (May 2013)
	Version 2.0 (June 2014)

