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Abstract—Recent advances in natural language processing
(NLP) and Big Data technologies have been crucial for scien-
tists analyzing political unrest and violence, preventing harm
and promoting the management of global conflict. Government
agencies and public security organizations have heavily invested
on deep learning based applications to study conflicts and
political violence globally. However, such applications involving
text classification, information extraction and other NLP related
tasks require extensive human efforts on annotating/labeling
texts. While limited labeled data may drastically hurt the models’
performance (over-fitting), large demands on annotation task
may turn real-world applications impracticable. To address
this problem, we propose Confli-T5, a prompt-based method
which leverages the domain knowledge from existing political
science ontology to generate synthetic but realistic labeled text
samples involving conflict and mediation domain. Our model
allows generating textual data from the ground up and employs
our novel Double Random Sampling mechanism to improve the
quality (coherency and consistency) of the generated textual
samples. We conduct experiments over six standard datasets
relevant to political science studies to show the superiority of
Confli-T5. Our codes are publicly available 1.

Index Terms—text augmentation, generation, classification,
natural language processing, conflict, coding event data, CAMEO

I. INTRODUCTION

Political scientists and government agencies in the security
sector have invested large resources on analyzing conflicts
and political violence across the globe. Extracting information
and discovering knowledge from very large unstructured data
(news articles) are crucial tasks to monitoring, understanding,
and predicting the dynamics of social unrest, political violence,
and armed conflict worldwide.

Along the past two decades, political scientists and compu-
tational linguistics have been explored two main directions to
extract structured event data from news articles. First, pattern-
matching based approaches such as PETRARCH family [1]–
[3] have been used to capture conflict interactions from text
and convert them to the form of a who-did-what-to-whom
template. These approaches rely on external repositories to
identify the presence of certain lexico-syntactic patterns in nat-
ural language sentences. In the second (and more promising)
direction, statistical language modeling approaches exploring

1https://drive.google.com/drive/folders/1VF35tdEsHuzvMCLdoP-0tGhg7h
jIbguG?usp=sharing

natural language processing (NLP) techniques have been de-
signed to address information extraction (IE), text classifica-
tion and other traditional NLP tasks in political science and
conflict domains.

Recent advances in deep-learning and computational lin-
guistics have been pushing political science scholars to focus
their efforts in the second direction. Previous efforts employing
transformer-based [4] pre-trained language models (PLMs)
(e.g., BERT [5]) have shown successful results in several
political science subareas, such as organized crime [6], protests
[7], and general conflict and mediation topics [8]–[11]. The
continuous advances on this direction are crucial for scientists
analyzing political unrest and violence, preventing harm, and
promoting the management of global conflict.

However, most of the political and social science applica-
tions involving text classification, information extraction or
other NLP related tasks require extensive human efforts on
annotating texts. Limited labeled data will certainly over-
fit supervised deep learning models, drastically hurting their
performance. On the other hand, the need of large amounts of
resources (time and money), and expertise to obtain enough
labeled data may preclude the application of such powerful
models on real-world cases.

To address this problem, we propose Confli-T5, a pipeline
model for generating synthetic text samples in conflict and
mediation domain. Confli-T5 is a prompt-based model that ex-
plores the knowledge resting in CAMEO (the most prominent
ontology and industry standard on political science) through
the large-scale language model T5 [12] to generate synthetic
labeled data for text classification. Our method differs from
previous augmentation models by dispensing human inputs
on prompt engineering, and by maintaining the consistency
between augmented text and their labels. We conduct exten-
sive experiments on six standard datasets relevant to conflict
research to demonstrate the superiority of our method.

This paper makes multiple contributions, bridging deep
learning for big data and geopolitics to support the advances
in conflict analysis. First, to the best of our knowledge we
are the first to propose a prompt-based model that transfers
learning from a complex ontology (and its knowledge bases)
for text augmentation purposes. Second, we design our model
to allow generating labeled textual samples, not requiring pre-
existing labeled data (as the other baseline models do). Third,

https://drive.google.com/drive/folders/1VF35tdEsHuzvMCLdoP-0tGhg7hjIbguG?usp=sharing
https://drive.google.com/drive/folders/1VF35tdEsHuzvMCLdoP-0tGhg7hjIbguG?usp=sharing


we introduce an innovative approach called double random
sampling to improve the coherence and consistency of the
generated synthetic text. Finally, we conduct extensive exper-
iments applied to political sciences to compare the empirical
results of existing text augmentation methods with ours.

II. PRELIMINARIES

A. Related Work

Pre-trained Language Models (PLM). Deep neural networks
based on self-attention structures introduced by transformer [4]
stretched the performance boundaries of language modeling
in NLP community. Transformer-based models such as BERT
[5], DistilBERT [13] and BART [14] allow transfer learning
through pre-train and fine-tune frameworks, reaching state-of-
the-art results in all traditional NLP tasks. Specifically, T5
[12] is a unified model that works in a sequence-to-sequence
fashion by converting text-based language problems into a
text-to-text format.

Prompt-based Learning. Traditionally, prompt engineering
in NLP consists on embedding the description of the task to
be solved as part of the input sequence. In practice, prompt
methods convert one or more tasks to a prompt-based dataset
(by adding prefixes associated to tasks) to learn language
models on those tasks. Recent works have been focusing on
employing PLMs for zero/few-shot learning through prompt-
based mechanisms [8], [15]–[20]. In our application, we use
prompt engineering to design a template for input sequences
that favors data augmentation for text classification. Our
method differs from other prompt-based generation methods
by dispensing human inputs to design the prompts. Confli-T5
automatically constructs prompts by resorting to existing on-
tology, making prompt engineering more simple and efficient.

Text Augmentation. Generating synthetic text data has been
a useful technique given the extensive costs (time, money
and expertise) associated to annotating texts. However, text
augmentation is not a simple task once it involves attending
complex syntactic and semantic structures. Previous works
have explored text augmentation approaches based on syn-
onym replacement [21], [22] and paraphrasing technique based
on back-translation [23]–[25]. Other works explored large-
scale language models by prepending the existing class labels
to input sequences [26], perturbing latent spaces [27]–[30], or
employing masked language models as denoising autoencoder
[31] to generate synthetic data. Recent works [20], [32]–[34]
have introduced mix-up based approaches for augmentation
by mixing pre-existing samples (or interpolating them in their
corresponding hidden space) to produce realistic texts.

Our model differs from the other augmentation methods in
two crucial aspects. First, it allows labeled text generation
dispensing pre-existing annotated data, by exploring an ex-
isting ontology. Second, Confli-T5 maintains the consistency
between the generated texts and the labels associated to them
(through our double random sampling method). By maintain-
ing consistency property, we mitigate noisy data points and
improve the performance on text classification.

Coding Political Event Data. Coding events consists of ex-
tracting structured data from news articles, usually in the who-
did-what-to-whom format. Most previous works for coding
event data are based on pattern-matching approaches [1]–
[3], [35], [36], usually supported by large repositories or on-
tologies. Recent works have successfully applied transformer-
based neural networks for coding events. Specifically, [11]
have empirically shown the significant superiority of BERT
implementation for coding events over pattern-matching ap-
proaches. Other studies have concentrated on conflict event
detection employing classical machine learning [36]–[39] and
deep learning [40]–[44] techniques. Further, [10] pre-trained
a PLM to generally attend NLP tasks on conflict domain.

Next, we describe relevant details about CAMEO, which is
the industry standard schema for event extraction in political
sciences.

B. CAMEO: Conflict and Mediation Observations

CAMEO is a dominant ontology for political event data that
incorporates data repositories for action-pattern dictionaries
(≈ 14K entries) and actor dictionaries (≈ 67K entries).

The action-pattern repository stores verbal patterns (resem-
bling regular expressions) associated to categories of political
interactions (known as CAMEO codes). Despite the high
granularity of event types offered by CAMEO (more than
200 action codes), conflict scholars traditionally use a higher
level of categories, grouping the original types into twenty
(rootcodes) or five classes (pentacodes), as summarized in
Table I and detailed in CAMEO codebook2.

TABLE I: Rootcodes and pentacodes descriptions.

CAMEO
Codes Rootcodes Pentacodes

010 - 019 01- Make Public Statement 0- Make a Statement
020 - 028 02- Appeal 0- Make a Statement
030 - 039 03- Express Intent to Cooperate 1- Verbal Cooperation
040 - 046 04- Consult 1- Verbal Cooperation
050 - 057 05- Engage in Diplomatic Cooperation 1- Verbal Cooperation
060 - 064 06- Engage in Material Cooperation 2- Material Cooperation
070 - 075 07- Provide Aid 2- Material Cooperation
080 - 0874 08- Yield 2- Material Cooperation
090 - 094 09- Investigate 3- Verbal Conflict
100 - 108 10- Demand 3- Verbal Conflict
110 - 116 11- Disapprove 3- Verbal Conflict
120 - 129 12- Reject 3- Verbal Conflict
130 - 139 13- Threaten 3- Verbal Conflict
140 - 1454 14- Protest 4- Material Conflict
150 - 155 15- Exhibit Force Posture 4- Material Conflict
160 - 1663 16- Reduce Relations 3- Verbal Conflict
170 - 176 17- Coerce 4- Material Conflict
180 - 186 18- Assault 4- Material Conflict
190 - 196 19- Fight 4- Material Conflict
200 - 2042 20- Unconventional Mass Violence 4- Material Conflict

Take the following action-pattern as an example:

$ * ROCKET_ATTACK + [194] # LAUNCH

This action-pattern is based on the verb launch and indicates
that occurrences in news articles matching this pattern should
be categorized with CAMEO code 194, which corresponds to
rootcode 19 and pentacode 4 (see Table I). In this example,

2https://parusanalytics.com/eventdata/data.dir/cameo.html

https://parusanalytics.com/eventdata/data.dir/cameo.html


symbols $ and + refer to source (subject) and target (object)
of the action, respectively. The symbol * indicates where the
verb must occur (in any tense) in the pattern. Additional words
surrounding the tokens in the pattern will not change the action
code 194, unless they occur between the tokens linked by the
symbol (e.g., “. . . rocket and attack . . .”).

The actor repositories store information about political
entities and their corresponding roles. Entities can be politi-
cians (persons); parties, gangs, associations or organizations
(group); and even political agents representing countries or
cities (place). The following is an entry from actor repository:

JUHA_KORKEAOJA [FINGOVAGR 030501-070430]

This entry stores information about a politician called Juha
Korkeaoja, who was Minister of Agriculture (code GOVAGR)
of Finland (code FIN) between 2003 and 2007.

CAMEO is basically a static ontology where the knowl-
edge rests. As aforementioned in previous subsection, pattern-
matching systems (e.g., PETRARCH) rely on CAMEO to
syntactically explore input sentences, looking for matches of
action-patterns and actors.

III. METHOD

In this section we describe the components of our pipeline
model Confli-T5. As depicted in Fig. 1, it first leverages
CAMEO to automatically produce prompts based on the
knowledge resting in this ontology. Next, the natural language
generation (NLG) model T5 is employed to generate synthetic
labeled texts. Then, BART works as a natural language infer-
ence (NLI) parser to improve the quality of the generated data,
which finally will serve as augmented data to train a supervised
model for a downstream task. In this paper, we focus on text
generation for classification purpose, leaving the analysis on
other tasks (e.g., named entity recognition) as future work.

Fig. 1: Diagram of text augmentation with Confli-T5.

A. CAMEO-based Prompts

Before describing the procedure to construct the prompts,
we formalize the following rules previously discussed in
Subsection II-B: every political actor ρ stored in CAMEO is
associate to an actor code codep(ρ); as well as a action-pattern
ν is mapped to a CAMEO code, defined as codev(ν).

Fig. 2 illustrates the steps to construct the prompts and the
prompts’ template, showing three real examples to demon-
strate the whole procedure. The template of our prompts
is composed by three parts: action-pattern ν, actors (source
ρsrc represented by $ and target ρtgt represented by +) and
prefix. Specifically, the prefix consists of a brief description
associated to the action code codev(ν). Such descriptions (used
as prefixes) are extracted from CAMEO codebook.

Our procedure depicted in Fig. 2 first randomly selects an
action-pattern ν from action-pattern dictionary. Then, it selects
the source ρsrc (subject of the action ν) and target ρtgt (object
of ν) from actors dictionary. Actor ρsrc is randomly selected
from set {ρ | codep(ρ) = codesrc}. The codesrc is selected
according to the conditional probability distribution P (src =
codesrc | codev(ν)), which denotes the probability that any
political actor associated to code codesrc appears as source of
any action ν with code codev(ν). The actor ρtgt is selected
in the same manner, using P (tgt = codesrc | codev(ν))
instead. These conditional probabilities were pre-computed
based on statistics observed on dataset available from previous
study [45] (1,920,174 real-world sentences collected from 400
news agencies spread around the world). After preliminary
experiments, we concluded that using these pre-computed
distributions produces better results than simply randomly
selecting political actors.

Next, the prompt’s prefix is selected from a dictionary
structure prefix(·) which maps an action code codev(ν)
to the description for this action. As illustrated in Fig. 2,
the action-pattern ν=“LAUNCH ROCKET ATTACK +” with
codev(ν)=194 will return the prefix prefix(194) = “$ at-
tacked + with artillery and tanks”. Based on our empirical
analysis, introducing the action descriptions as prefixes in
prompts improves the quality of the text generated.

Lastly, the components aforementioned are put together
to form the final prompt. As depicted in Fig. 2, prefix and
action-pattern are appended and filled up with the selected
actors (replacing $ and + symbols). Blank tokens ” “ are
added among the words from action-pattern to indicate the
places where the NLG model will fill up. The CAMEO codes
codev(ν) associated to action-patterns ν will later serve to
indicate the labels for the prompts using ν.

B. Double Random Sampling Strategy
As depicted in Fig. 1, T5 is employed as NLG model for

text infilling on CAMEO-based prompts (as exemplified in
Fig. 2). Following, BART will work as NLI parser to filter
out incoherent and inconsistent text generated samples.

Conditional Generation. Technically, auto-regressive lan-
guage generation models (such as T5) work with the assump-
tion that the probability of a word sequence can be decom-
posed into the product of conditional next word probabilities:

P (w1:T | W0) =

T∏
t=1

P (wt | w1:t−1,W0) (1)

where W0 is the initial context and wt is the word or token
to be generated at a given step t in the sequence. For a given
vocabulary V , the probability of a word vl ∈ V occur in the
position wt of the sequence is:

P (wt = vl | w1:t−1,W0) =
exp (zl/temp1)∑V
j exp(zj/temp1)

(2)

where z1:|V | are the logits from language model’s output layer
and temp1 is the temperature used to re-estimate the softmax
above.



Fig. 2: Actors and action-patterns are randomly selected from CAMEO ontology. The prompt prefixes are selected based on the
action-codes. Actions, actors and prefixes will then fill the prompts’ template to construct the prompts (including blanks). The
prompts will feed the NLG model, which in turn fills the blanks to generate synthetic labeled samples for text classification.

In our implementation, we use nucleus sampling [46] as
decoding mechanism for text generation with T5. Instead of
picking the next token wt to maximize the probability ex-
pressed in Eq. 2, nucleus sampling randomly selects wt taking
into consideration the shape of the probability distribution. We
select the highest probability tokens whose cumulative prob-
ability mass exceeds the threshold p and adjust the original
probability distributions for this small subset of vocabulary.
From P (wt = v | w1:t−1,W0), the top-p vocabulary V

′ ⊂ V
is defined as the smallest set such that∑

v∈V ′

P (wt = v | w1:t−1,W0) ≥ p (3)

The original distribution from Eq.2 is re-scaled as follows:

P (wt = v|w1:t−1) =

{
P (wt = v|w1:t−1)/p

′
, if v ∈ V

′
(4)

0, otherwise (5)

where p
′
=

∑
v∈V ′ P (wt = v | w1:t−1,W0).

Nucleus sampling introduces certain level of randomness
in the generated text, making it closer to human-written.
The temperature sampling in the softmax equation (Eq. 2)
will produce more coherent synthetic samples, by making
the distribution less random (skewing the distribution towards
high probability events) and improving the decoding process.
Therefore, we use T5 for condition generation with nucleus
sampling to fill up the blanks in CAMEO-based prompts (see
bottom of Fig. 2) and generate the full synthetic corpus D̃.

Natural Language Inference. NLI is a standard NLP
task which determines whether a hypothesis is true (entail-

ment), false (contradiction), or undetermined (neutral) given
a premise. Both text sequences for premise and hypothesis
are given as input to the model. Confli-T5 implements the
transformer-based BART for NLI as zero-shot mechanism to
verify whether the generated texts are consistent to the labels
(CAMEO codes) assigned to each prompt. For a generated
text sample, we take the excerpt corresponding to the prefix
(action description from codebook) as hypothesis and the
text generated from the action-pattern as premise. Given the
(premise, hypothesis) pair as input, we use BART entailment
score to identify incoherent or inconsistent generated samples.

Table II shows some real examples of generated text
samples from D̃, followed by their prefixes, original action-
patterns, CAMEO codes and entailment (NLI) scores. In
examples corresponding to IDs 1 to 4, the generated texts
are consistent to their corresponding prefixes, with the high
entailment scores reinforcing such consistency. On the other
hand, examples from 5 to 7 show low entailment scores,
indicating either lack of consistency between generated text
and prefixes (Ex.IDs 6 and 7) or lack of coherence in the
generated text (Ex.ID 5).

However, we noted that most of the generated samples with
the highest scores are short sentences that barely reproduce the
CAMEO action-patterns by simply filling them with preposi-
tions and articles (Ex.IDs 3 and 4). While searching examples
with slightly lower entailment scores (Ex.IDs 9 to 11), we
observed that these generated samples add more tokens over
the original patterns, yet keeping consistency and coherency.

It seems beneficial to get rid of the samples with low NLI
scores to avoid noisy examples in the training synthetic data.



TABLE II: Examples of text samples generated using Confli-T5 and their corresponding prefixes (with sources in red and
targets in blue), CAMEO action-patterns (with main verbs in bold), CAMEO codes and entailment (NLI) scores.

Ex.
ID Generated Text (Premise) Prefix (Hypothesis) CAMEO Pattern CAMEO

Code
NLI

Score

1 Defense Minister of India allowed the US Forces
to use its marine bases as a training facility.

Defense Minister of India cooperated
militarily with US Forces.

$ ALLOW + USE
MARINE BASES 062 0.9915

2 Colombian Armed Forces fired more than 200
tear gas grenades at Rebel Insurgents.

Colombian Armed Forces used tactics of
violent repression against Rebel Insurgents. $ FIRE TEAR GAS + 175 0.9994

3 Italy lifted ban on trade with Cuba in 2009. Italy eased economic sanctions on Cuba. $ LIFT BAN ON
TRADE WITH + 085 0.9971

4 Prime Minister of the United Kingdom canceled
a peace talk with Afghanistan on July 9.

Prime Minister of the United Kingdom
halted negotiations with Afghanistan.

$ CANCEL PEACE
TALK + 164 0.9967

5
Armenian War Vessel died from injuries and
damage caused to their crew by U.S.
Reaper Drone in December 2017.

U.S. Reaper Drone attacked Armenian
War Vessel through conventional
military force.

+ DIE FROM INJURIES
CAUSED BY $ 190 0.0002

6 K. Annan decided not to open a formal
investigation of the Iraqi ministries. K. Annan investigated Iraqi ministries. $ DECIDE TO OPEN

INVESTIGATION + 090 0.0063

7 U.N. efforts have failed to prevent the
attack on Germany. U.N. supported Germany. $ EFFORTS TO

PREVENT ATTACK + 053 0.0077

8 U.S. urged Beijing to deploy its armed
forces in the region to protect Taiwan. U.S. supported Taiwan. $ URGE TO DEPLOY

FORCES TO PROTECT + 053 0.8236

9
United Nations Commission for Human
Rights voiced concern over the Iran refusal
to cooperate with Syria.

United Nations Commission for Human
Rights disapproved Iran, raising
many objections.

$ VOICE CONCERN
OVER + REFUSAL 110 0.9784

10
Malaysian Minister of Domestic Trade
voted in favour of the proposal to
strengthen its sanctions against Libya.

Malaysian Minister of Domestic
Trade imposed sanctions on Libya.

$ VOTE STRENGTHEN
SANCTIONS + 163 0.9603

11 Demonstrators protested against racist
remark by California Governor Jerry Brown.

Demonstrators engaged in civilian
demonstrations to protest against
California Governor.

$ PROTEST REMARK
BY + 140 0.9629

Besides, searching for distinct and more natural generated
samples will increase the quality and diversity of the training
set. Based on these observations, we design an extra layer of
random sampling called top-q sampling (inspired by top-K
[47]–[49]) to select the generated sentences from D̃.

Top-q sampling first filters the subset of sentences Q ⊂
D̃ such that entailment score is higher than a threshold q.
From Q, it constructs the training synthetic data D ⊂ Q
by randomly selecting |D| sentences according to probability
distribution proportional to the NLI scores and the topics we
want to train the supervised model. Thus, the probability of
selecting a synthetic sentence d ∈ Qτ is

P (d) =
exp (nli(d)/temp2)∑Qτ
e exp(nli(e)/temp2)

(6)

where nli(d) is the NLI score for d, Qτ ⊂ Q is composed
only by synthetic samples associated to a topic τ (a CAMEO
code from Table I), and temp2 is a temperature (as in Eq. 2).

Top-q sampling allows controlling consistency between
generated texts and labels (through NLI) while keeping text
fluency and diversity provided by nucleus sampling. The usage
of prefixes in the prompts are useful not only for providing a
context (W0 in Eq. 1) but also controlling label consistency
through top-q. We call the two-layer of random sampling
(nucleus and top-q sampling) as Double Random Sampling.

C. Training Synthetic Data

We close this section by putting together in Algorithm 1 all
the steps previously discussed. Confli-T5 Procedure receives
as input the thresholds p and q (see III-B), temperatures
temp1 and temp2, the desired output data size N=|D|, an

optional pre-existing labeled data Λ, and two dictionaries
CAMEO2labels and CAMEO2distr.

Algorithm 1: Confli-T5 Procedure
input : dictionaries CAMEO2labels and CAMEO2distr,

thresholds p and q, temperatures temp1 and temp2,
output size N, labeled data Λ (default None)

output: training synthetic data D

1 explored codes ← CAMEO2labels.keys()
2 prompts ← get prompts(CAMEO, explored codes)

3 D̃ ← T5 generation(prompts, explored codes, p, temp1)

4 foreach d in D̃ do d.nli ← BART nli(d.text, d.prefix)

5 if Λ is not None then D ← Λ
6 else D ← {Ø}
7 foreach (code τ , probability Pτ ) in CAMEO2distr.items() do
8 y ← CAMEO2labels[τ ]
9 size ← N * Pτ

10 Qτ ← topQFilter(D̃, τ , q)
11 Dτ ← topQSampling(Qτ , size, temp2)

12 foreach d in Dτ do D.append( (d.text, y) )

13 return D

Smaller portions of labeled data can be added to final
training set D through Λ. Furthermore, additional data out
of conflict domain (e.g., sports, technology or religion) can
also be included to D through parameter Λ.

The dictionary CAMEO2labels maps the chosen CAMEO
codes to the final desired labels, while CAMEO2distr maps
these codes to the desired distributions in the final data D.
Line 2 creates the prompts (see III-A), while lines 3 and 4
generate the synthetic samples through T5 and computes NLI



score through BART, respectively. Finally, the training data D
is constructed in Lines 7 to 12, by top-q searching on D (see
III-B) and mapping the pre-selected CAMEO codes to desired
training labels. Text x appended to D in line 12 is composed
by generated texts only, discarding prefixes and NLI scores.

IV. EXPERIMENTS AND RESULTS

A. Setup
To conduct the experiments presented in this paper, we used

a computer with one Quadro RTX 8000 GPU. We run 10
rounds of training process for each experimented model and
report the averaged results observed on testing set. In each
round, we generate different train/validation splits (85%/15%
over training data) and randomly initialize the model based
on the seed assigned for that round. We train our models over
20 epochs and the best model of each round is selected based
on F1-scores observed on their corresponding validation splits.
We use the same random seeds for all evaluated models and
set the following Confli-T5 hyper-parameters: p=0.9, q=0.975,
temp1=0.95 and temp2=0.90. For all the experiments, we
utilize the same full synthetic corpus D of size |D|=408, 000
and explore it using top-q search with different topics (codes
in Table I), as expressed in Algorithm 1.

As pre-trained language models, we used t5-large for T5
and bart-large-mnli for zero-shot BART. As transformer-based
network for training the models with synthetic data, we used
bert-base-uncased and ConfliBERT-cont-uncased 3 [10].

For a more comprehensive evaluation, we selected three
augmentation methods using completely different approaches
as baselines. EDA [21] applies simple operations such as
synonym replacement, random insertion, random swap, and
random deletion to augment text. TMix [34] creates large
amount of augmented training samples by interpolating text
hidden space in BERT model. Finally, GPT3Mix [20] (G3M
in experiments) is a prompt-based generation method that uses
pseudo-labeling to generate text samples with their soft-labels.
We use the hyperparameters reported by the authors. The data
splits, number of seeds and reporting approach were exactly
the same for all the models evaluated in this section.

B. Datasets
Overall, we evaluated the models performance over six stan-

dard datasets used in political and social science studies. As
described next, we slightly pre-process some of the following
datasets to utilize them for text classification.

Conflict and Mediation Observations (CAMEO) [11] is a
sentence level data, following the industry standard schema for
event extraction in political science (see II-B). Data points are
annotated with the actions (pentacodes) occurring in the sen-
tences. In our experiments, we remove the records associated
to pentacode 0-Make a Statement (see Table I) to concentrate
our analysis on conflict and mediation related topics.

Automatic Content Extraction 2005 (ACE05) is a stan-
dard dataset widely used on event extraction and NLP re-
searches. Overall, it annotates 33 event types, including

3https://huggingface.co/snowood1/ConfliBERT-scr-uncased

conflict-related subjects (Attack and Demonstrate labels),
which correspond to approximately 30% of the total annotated
events. Once political and social scientists are often interested
in extracting conflict-related events from large corpora, we un-
derstand ACE05 is an appropriate data for evaluating whether
synthetic data from Confli-T5 can train supervised models to
perform such task. For our experiments, we select distinct
sentences, marking those containing conflict-related events as
1 and the remaining records as 0 for binary classification task.

Massive Event Detection (MAVEN) [50] is another stan-
dard dataset for event extraction, which annotates 168 event
types, including military, civil and terrorist related conflicts.
In our experiments, we utilize the topic labels of documents
to split the original document-level data in three conflict
categories for text classification, as described in Table III.

WikiEvents (Wiki) [51] is a document-level event ex-
traction dataset containing 50 event types, including conflict
related categories such as violent attack and demonstration.
For our experiments, we collect the sentences containing any
conflict related event with flag 1 and the remaining sentences
as 0 (see Table III), similarly as we did for ACE05.

Global Contention Politics (GLOCON) [52] is a sentence-
level corpus containing records of real-world protest events
reported in distinct countries (e.g., India, China, South Africa
and Argentina). We utilize GLOCON data following exactly
the same format used in previous work [10].

India Police Events (IndPol) [53] contains news sentences
(in English language) from Times of India articles reporting
police activity events during a period of widespread Hindu-
Muslim violence in Gujarat (March 2002). The sentences are
annotated in multi-label fashion considering four categories
of police activity: kill, arrest, fail to act and force. In our
experiments, we remove the data points either containing no
police activity events or containing more than one event.

TABLE III: Datasets description: sizes and mapping from
original to rootcodes (or CAMEO codes).

Dataset Train/Test Label Mappings
Original Rootcodes Label

CAMEO 1,799/395

Verb. Coop. 3 - 5 0
Mat. Coop. 6 - 8 1
Verb. Confl. 9 to 13, 16 2
Mat. Confl. 14, 15, 17 - 20 3

ACE05 3,056/766 Attack, Demonstrate 14 and 19 1
Others 1, 2, 3, 4, 7, 8 0

MAVEN 2,895/725

Mil.Conflict,Mil.
Attack, Mil.Operation 15 and 19 1

Civ.Attack, Civ.Conflict,
Terrorist Attack 14 2

Others 4 and 5 0

Wiki 1,582/396
Conflict (Attack,

Demonstrate, Defeat) 14, 18 and 19 1

Others 3, 4 and 7 0

GLOCON 1,548/388 Protest 14 1
No Protest 1 to 8 0

IndPol 555/140

Kill (1823,185,
186,202) 0

Arrest (173) 1
Fail to Act 5 and 12 2

Force
(170 to 173,

175,180,
190 to 193)

3

https://huggingface.co/snowood1/ConfliBERT-scr-uncased


TABLE IV: Downstream classification performance (f1-scores): Confli-T5 vs. baselines.

Dataset Samp.
(%)

Augmentation Factor (Applied Over the Samples)

0× 1× 2× 3× 4×
EDA TMix G3M Ours EDA TMix G3M Ours EDA TMix G3M Ours EDA TMix G3M Ours

CAMEO

0% - - - - 78.3 - - - 83.4 - - - 80.6 - - - 81.1
1% 18.2 12.9 17.5 11.9 28.1 14.3 21.4 20.5 29.5 15.6 23.4 16.6 38.4 14.9 26.1 17.6 47.8
5% 48.0 55.2 51.9 41.3 60.7 54.8 54.2 35.9 73.2 60.8 53.2 29.7 71.5 57.8 52.6 26.6 77.0
10% 68.6 72.9 68.7 57.3 75.7 75.5 68.2 45.5 80.8 73.3 68.3 47.3 82.3 74.9 66.1 38.8 82.8
25% 84.2 84.1 79.5 65.5 86.1 83.6 79.5 67.8 86.7 83.3 78.1 61.8 88.1 83.1 75.7 55.5 88.5
50% 88.4 88.7 83.9 72.8 88.5 88.3 84.7 73.2 90.0 88.4 80.7 62.8 89.8 88.1 81.7 65.6 90.7

ACE05

0% - - - - 48.9 - - - 51.4 - - - 52.6 - - - 51.4
1% 56.5 60.6 58.4 56.2 59.4 60.9 62.9 67.2 61.5 60.4 59.3 61.6 57.0 61.6 59.2 59.0 57.5
5% 68.8 73.2 70.7 71.7 71.0 74.0 72.6 69.9 74.3 75.3 73.6 73.5 74.3 76.1 73.8 70.4 77.0
10% 83.6 82.5 82.0 75.4 85.5 80.3 81.3 77.2 85.9 82.4 82.3 77.1 85.6 81.7 82.4 78.6 85.4
25% 88.1 88.1 86.6 80.2 88.4 88.0 87.3 81.9 87.8 88.8 86.7 79.6 88.3 88.9 86.3 78.7 88.4
50% 90.2 89.9 89.6 85.4 89.8 90.3 88.2 81.4 90.5 89.7 86.6 78.7 89.8 89.2 86.5 77.4 89.8

MAVEN

0% - - - - 61.8 - - - 58.2 - - - 59.0 - - - 57.0
1% 64.4 40.3 48.0 37.9 67.2 41.5 56.1 49.0 78.4 44.1 66.1 69.9 85.1 46.4 54.2 32.6 84.8
5% 80.2 85.5 83.6 83.8 85.6 86.7 83.2 78.1 88.3 87.7 84.3 80.9 88.4 88.1 77.1 58.7 87.9
10% 88.6 90.3 87.6 79.9 90.1 90.3 88.0 80.5 90.4 91.2 84.4 70.2 89.8 91.3 82.6 65.4 89.8
25% 90.3 90.3 90.0 88.6 91.0 90.5 78.4 53.0 91.5 90.7 77.5 51.5 90.2 90.7 84.8 72.2 91.0
50% 91.2 91.2 89.7 85.6 91.8 91.5 81.5 59.6 91.8 90.9 86.2 74.6 91.8 91.4 82.0 61.0 91.9

Wiki

0% - - - - 66.6 - - - 66.7 - - - 65.7 - - - 64.0
1% 46.4 45.4 47.6 52.4 45.1 53.2 56.5 53.8 46.0 50.8 54.5 56.4 43.1 51.4 52.9 56.7 51.0
5% 60.1 63.7 64.5 65.1 66.1 58.9 64.0 62.7 70.8 62.9 64.6 61.9 69.8 63.8 65.4 61.5 73.0
10% 72.1 67.7 69.7 70.0 70.8 67.4 68.5 62.6 75.0 65.7 69.8 68.4 72.9 66.9 69.4 66.5 72.7
25% 74.9 71.7 73.1 68.8 78.0 73.7 75.0 70.9 77.8 75.0 73.9 67.3 78.5 73.9 73.1 66.5 77.3
50% 78.4 77.8 76.4 71.4 77.8 76.6 76.9 71.7 79.6 77.1 76.0 70.3 79.3 75.3 75.2 70.0 80.3

GLOCON

0% - - - - 72.0 - - - 68.9 - - - 71.7 - - - 73.4
1% 44.2 34.7 43.5 55.7 42.9 36.7 47.5 60.7 46.0 35.5 48.0 64.0 46.0 33.2 45.8 61.6 45.4
5% 46.0 64.7 64.0 63.8 66.4 65.5 68.0 69.2 71.2 65.3 66.8 66.2 71.7 64.4 67.7 66.8 74.5
10% 65.7 66.8 70.1 70.0 71.0 67.0 72.6 71.7 76.4 70.9 71.8 67.8 75.6 72.9 73.3 70.4 76.2
25% 79.8 76.4 79.0 77.5 80.8 76.8 77.4 74.5 80.9 75.8 77.7 74.0 81.8 78.1 78.2 74.7 80.4
50% 80.9 82.6 79.9 76.1 80.8 82.6 80.2 76.1 81.8 82.2 79.2 73.6 81.2 84.1 79.9 75.0 80.7

IndPol

0% - - - - 64.0 - - - 62.0 - - - 62.1 - - - 59.9
1% 19.2 16.9 19.0 23.2 17.9 16.9 18.5 20.3 18.9 16.9 16.2 13.4 19.3 17.1 17.6 16.4 20.9
5% 30.4 34.0 36.8 42.3 36.2 44.1 41.1 43.5 39.5 46.5 51.5 46.6 61.7 46.8 47.6 30.7 69.5
10% 56.4 62.2 59.3 49.3 65.3 60.8 62.6 50.9 73.7 64.4 64.5 50.4 77.7 65.1 67.6 57.6 78.2
25% 79.1 75.6 76.7 73.1 81.1 79.1 74.1 61.9 80.2 75.2 76.8 72.4 82.3 79.7 72.1 57.3 77.4
50% 85.7 85.1 84.0 77.2 87.8 86.6 84.5 77.4 88.6 83.6 79.2 68.3 85.5 85.7 82.8 73.9 86.9

Average 67.6 67.7 67.7 64.3 70.9 68.5 68.5 62.3 73.6 69.0 68.7 61.9 74.6 69.4 68.0 58.8 75.8

Experiments have been repeated 10 times and presented results correspond to the mean of f1-score observe in testing set of each data. Results in bold font
indicate the best f1-score for each sample size and augmentation factor (0.01, 0.05 or > 0.05 level of significance in t-test). To measure significance levels,
we selected the highest p-value after comparing best method versus all the others.

Table III summarizes the details regarding the organization
and pre-processing of these datasets. Information under Label
Mappings show which Rootcodes we used to synthesize texts
to be associated to Original labels in the datasets. Specifically
for IndPol data, we used CAMEO codes (in parenthesis)
instead of rootcodes. The last column Label simply denotes
the final labels we used in the training synthetic data D . In
practice, columns Rootcode and Label show the information
stored in structure CAMEO2labels in Algorithm 1. In our
experiments, we make the distributions in CAMEO2distr to
follow the same distribution as in the original data.

C. Data Augmentation Experiments

Traditionally, text augmentation methods require a pre-
existing portion of annotated text to augment from it. So, for
our experiments, we randomly sample the existing training
data into smaller portions (e.g., 1%, 5%, 10%, 25%, 50% of
the original size) and assume that these samples are the pre-
existing annotated data available. We apply the augmentation

methods to synthesize data of different sizes, increasing the
pre-existing sample by an augmentation factor (e.g., 1× or
2× of the sample size). Finally, we train the downstream
classification model BERT using the pre-existing plus the syn-
thetic samples as training data and measure the classification
performance using the original test sets. We can add pre-
existing data and control the augmentation factor in Confli-T5
through the inputs Λ and N in Algorithm 1, respectively.

Table IV shows the f1-scores observed on downstream
classification over the six datasets (see IV-B), considering 20
possible scenarios (5 sample sizes × 4 augmentation factors).
The values under the column 0× show the f1-scores observed
when no augmentation is done (training on the samples only).
Furthermore, the lines 0% (of sample) show the performance
observed while training the models with synthetic data only
with augmentation factors applied over the original data set
(instead of the sample sizes). Since the baseline models cannot
augment without pre-existing annotated data, then no values
are input for them on these lines. Bold values indicate the
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Fig. 3: F1-score on CAMEO dataset varying sample size and augmentation factors

best f1-score for each sample size and augmentation factor,
while underlined values indicate the best performance on
classification for the evaluated sample sizes of a dataset. The
last line averages the f1-scores measured on all datasets for
each augmentation method. Following are the findings from
the results in Table IV.

Confli-T5 outperforms text augmentation baselines in
most cases by a large margin. Our model produces better
results in most of the 20 scenarios on all the evaluated datasets.
Confli-T5 shows the best observed performance (underlined
values) on 23 out of the 30 evaluated samples on our ex-
periments (excluding 0% samples lines). Moreover, Confli-
T5 significantly outperforms the baselines in all augmentation
factors, when considering the average performance on all
datasets (last line in the Table IV).

Although G3M is a powerful prompt-based baseline, it
requires human inputs for prompt engineering, which may
have hurt its performance. Tuning prompts on G3M is fi-
nancially expensive once it implements GPT3 (not an open-
source tool). On the other hand, EDA has a low complexity
(and financial) cost and produces more diverse data by using
wordnet replacements and shuffling words. However, EDA
ignores sentences context and does not control the label
consistency, which certainly may have hurt its performance.

Confli-T5 improved the classification performance ob-
served when using the annotated samples only (0× column)
in all sample sizes. It shows indications that augmenting
training data with Confli-T5 will improve (or at least not hurt)
the performance in any sample sizes.

Confli-T5 does not rely on pre-existing annotated data to
generate labeled samples. Although Confli-T5 is applicable
only for text augmentation on conflict domain (or containing
conflict topics), our model can generate data even without pre-
existing annotated samples. Using the generated samples only
for training the classifier produced good results. We believe

that combining active learning with the Confli-T5 capability of
generating labeled data from scratch may boost the quality of
synthetic data with a small human input. Incorporating active
learning mechanism in Confli-T5 are part of our future work.

Confli-T5 continues improving the performance on
downstream classification on large samples. Performance
improvement on downstream text classification offered by
augmentation techniques is usually more challenging on larger
datasets because they tend to have a larger level of diversity.
This effect is observed in Table IV, where the performance
gains using augmentation methods are larger on smaller sam-
ples. Still, our model improves the classification performance
for 50% sample sizes, outperforming the baselines in five out
of the six datasets.

To better illustrate the gains curve provided by Confli-
T5, we stretch the sample sizes and augmentation factors
to evaluate the performance on CAMEO data in Fig. 3a.
The chart shows that the performance can still be improved
with synthetic data even when using the whole dataset as
part of the training set. Same findings were observed for
the other five dataset evaluated in our experiments (plots are
suppressed due to space constraints). Chart in Fig. 3b shows
similar analysis, but instead of fine-tuning common BERT,
we do it over ConfliBERT [10]. Once this model was pre-
trained with conflict domain data only, it is expected to learn
faster/better, requiring lower volume of conflict-related data.
Still, the conclusions are the same as those observed in Fig.
3a, indicating that Confli-T5 can improve the results on all
experimented sample sizes even when using Confli-BERT.

D. Parameter Study

The two most important hyperparameters to be tuned in
our method are p and q, for nucleus and top-q sampling,
respectively. Based on previous studies [46], varying p affects
the fluency and diversity of the generated text. However, for



our application, p can not control the consistency between the
generated text and the label associated to it. On the other hand,
q impacts in both diversity and consistency: q → 0 increases
the diversity and decreases the labels consistency, while q → 1
will behave in the opposite direction. Once ensuring label
consistency is a crucial aspect for our application, we focus on
analyzing the effect of varying q while keeping p=0.9 (which
produced better results on our preliminary validations).

Table V shows the classification performance on CAMEO
dataset, synthesizing data of different sizes of N using three
model configurations. The first, called Uniform, implements
Confli-T5 without NLI layer, uniformly selecting N entries
from D̃. The second, called Greedy, implements Confli-T5
with NLI layer, selecting the top N samples with largest
NLI scores from D̃. The third one is Confli-T5 using top-q
sampling with different values for hyperparameter q.

TABLE V: Uniform vs. Greedy vs. Top-q Sampling.

N Unif. Greedy Top-q Sampling
q=0.975 q=0.95 q=0.90 q=0.85

1,000 74.76 67.14 77.12 77.26 76.02 77.90
2,500 80.32 74.61 81.33 81.59 82.58 79.92
5,000 80.93 82.20 83.30 81.82 79.76 82.86

10,000 80.28 81.97 83.26 82.79 82.77 83.10
15,000 81.67 82.58 83.56 82.68 84.69 83.93
20,000 81.98 82.50 83.42 83.40 82.74 82.52
30,000 80.09 83.63 85.12 84.65 84.67 83.03
40,000 82.43 82.92 83.55 83.69 83.90 84.07
50,000 81.82 83.48 84.49 82.10 84.94 84.37

Results in bold font indicate the best f1-score for each size N .

We first note that adding NLI layer in Confli-T5 improves
the quality of the generated data. The classification perfor-
mance using greedy strategy is better than when we disregard
the NLI layer (Unif.) for all sizes of N , except for the smallest
sets (1, 000 and 2, 500). It occurs because these small sets
(with largest NLI scores) are composed by sentences that
barely reproduce the CAMEO action-patterns (as discussed
in Subsection III-B and Table II). Such sentences tend to be
too semantically close to the codebook prefixes, making the
synthetic training data too homogeneous. As a result, the low
level of diversity introduced in this data will preclude the
classification models trained over them to generalize well.

To increase the diversity in synthetic data, we use top-q
sampling, which controls labels consistency and simultane-
ously allows certain level of randomness. Results on Table
V show an overall improvement on downstream classification
when using top-q, even for smaller sizes of N . In particular,
q=0.975 consistently produced better results than uniform and
greedy sampling, outperforming the other values for q in four
out of the nine tested sizes for N . For this reason, we used
q=0.975 for all experiments presented in this section.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed Confli-T5, a prompt-based model
which leverages the domain knowledge from CAMEO to
generate synthetic text samples in conflict domain. Our model
allows generating labeled data from the ground up, outper-
forming the baseline models in most of the tested scenarios.

We believe that Confli-T5 can be successfully employed
as a text augmentation method to support the advances in
political and social sciences, promoting the management of
global conflict. Future works can be summarized in three
main directions: (i) develop active learning functionality to
work with Confli-T5, (ii) develop data augmentation module
for named entity recognition using CAMEO, and (iii) explore
multi-lingual function for Confli-T5.
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